Exam Review

Calculus

1. Attempting to integrate.
$y=x^{3}-5 x+c$
substitute $(2,6)$ to find $c\left(6=2^{3}-5(2)+c\right)$
$c=8$
$y=x^{3}-5 x+8\left(\right.$ Accept $\left.x^{3}-5 x+8\right)$
2. (a) $x=\frac{1}{5}$ or $5 x-1=0$
(b) $\quad f^{\prime}(x)=\frac{(5 x-1)(6 x)-\left(3 x^{2}\right)(5)}{(5 x-1)^{2}}$

$$
\begin{aligned}
& =\frac{30 x^{2}-6 x-15 x^{2}}{(5 x-1)^{2}} \text { (may be implied) } \\
& \left.=\frac{15 x^{2}-6 x}{(5 x-1)^{2}} \quad \text { (accept } a=15, b=-6\right)
\end{aligned}
$$

3.

(a) (i) intersection points $x=3.77, x=8.30$ (may be seen as intersection points $x=3.77, x=8.30$ (may be
the limits)
approach involving subtraction and integrals
fully correct expression
eg $\int_{3.77}^{8.30}((-4 \cos (0.5 x)+2)-(\ln (3 x-2)+1)) \mathrm{d} x$,
$\int_{3.77}^{8.30} g(x) \mathrm{d} x-\int_{3.77}^{8.30} f(x) \mathrm{d} x$
(ii) $A=6.46$
(b) (i) $\quad f^{\prime}(x)=\frac{3}{3 x-2}$

Note: Award Al for numerator (3), Al for 1 mark for additional terms.
(ii) $\mathrm{g}^{\prime}(x)=2 \sin (0.5 x)$

Note: AwardAl for 2, Al for $\sin (0.5 x)$, but penalize I mark for additional terms.
(c) evidence of using derivatives for gradients
correct approach
eg $f^{\prime}(x)=g^{\prime}(x)$,
$\begin{aligned} & \text { eg } f^{\prime}(x)=\mathrm{g}^{\prime}(x), \text { points of intersection } \\ & x=1.43, x=6.10\end{aligned}$
4. (a)

.
(A1)
(A1)(A1)
(M1)
(M1)

A1 N1
(M1)
A1A1 N2N2
[6]

\qquad
,
(b)

		x - coordinate
(i)	Maximum point on f	r
(i)	Inflexion point on f	q

(c) METHOD 1

Second derivative is zero, second derivative changes sign.

METHOD 2

There is a maximum on the graph of the first derivative.
6. (a) $f^{\prime}(x)=x^{2}+4 x-5$
eg $\int_{1}^{5} 3 f(x) \mathrm{d} x=3 \int_{1}^{5} f(x) \mathrm{d} x, \frac{12}{3}, \int_{1}^{5} \frac{3 f(x) \mathrm{d} x}{3}$
(do not accept 4 as this is show that)
evidence of stating that reversing the limits changes the sign
eg $\int_{5}^{1} f(x) \mathrm{d} x=-\int_{1}^{5} f(x) \mathrm{d} x$
$\int_{5}^{1} f(x) \mathrm{d} x=-4$
(b) evidence of correctly combining the integrals (seen anywhere)
eg $I=\int_{1}^{2}(x+f(x)) \mathrm{d} x+\int_{2}^{5}(x+f(x)) \mathrm{d} x=\int_{1}^{5}(x+f(x)) \mathrm{d} x$
evidence of correctly splitting the integrals (seen anywhere)
eg $I=\int_{1}^{5} x \mathrm{~d} x+\int_{1}^{5} f(x) \mathrm{d} x$
$\int x \mathrm{~d} x=\frac{x^{2}}{2} \quad$ (seen anywhere)
$\int_{1}^{5} x \mathrm{~d} x=\left[\frac{x^{2}}{2}\right]_{1}^{5}=\frac{25}{2}-\frac{1}{2}\left(=\frac{24}{2}, 12\right)$
$I=16$
(b) evidence of attempting to solve $f^{\prime}(x)=0$
evidence of correct working
$e g(x+5)(x-1), \frac{-4 \pm \sqrt{16+20}}{2}$, sketch
$x=-5, x=1$
so $x=-5$
(c) METHOD 1
$f^{\prime \prime}(x)=2 x+4$ (may be seen later)
evidence of setting second derivative $=0$
eg $2 x+4=0$
METHOD 2
eg $\frac{-5+1}{2}$,
$x=-2$
(d)
attempting to find the value of the derivative when $x=3$ $f^{\prime}(3)=16$
valid approach to finding the equation of a line eg $y-12=16(x-3), 12=16 \times 3+b$
$y=16 x-36$

METHOD 2

$y=x^{-1} \operatorname{In} x$
Evidence of using the product rule
(c) (i) $\int\left(9+\frac{6}{2 x-5}+\frac{1}{(2 x-5)^{2}}\right) \mathrm{d} x=9 x+$

$$
3 \ln (2 x-5)-\frac{1}{2(2 x-5)}+C
$$

b) (i) $y=3, x=\frac{5}{2}$ (must be equations)
(ii) $x=\frac{14}{6}\left(\frac{7}{3}\right.$ or 2.33 , also accept $\left.\left(\frac{14}{6}, 0\right)\right)$
(iii) $y=\frac{14}{6}(y=2.8)\left(\operatorname{accept}\left(0, \frac{14}{5}\right)\right.$ or $\left.(0,2.8)\right)$
9. (a)

Notes: Award Al for both asymptotes shown.
The asymptotes need not be labelled.
Awara Al for the left branch in
Al fort position,
ht branch in
approximately correct position.

$$
\mathrm{A} 1 \mathrm{~A} 1 \mathrm{~A} 1
$$

(ii) Evidence of using $V=\int_{a}^{b} \pi y^{2} \mathrm{~d} x$

Correct expression

$$
\begin{aligned}
& \text { eg } \int_{3}^{a} \pi\left(3+\frac{1}{2 x-5}\right)^{2} \mathrm{~d} x, \pi \int_{3}^{a}\left(9+\frac{6}{2 x-5}+\frac{1}{(2 x-5)^{2}}\right) \mathrm{d} x, \\
& {\left[9 x+3 \ln (2 x-5)-\frac{1}{2(2 x-5)}\right]_{3}^{a}}
\end{aligned}
$$

8. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \cos 3 x$

A1 N 1
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{\cos ^{2} x}+\tan x \quad$ accept $x \sec ^{2} x+\tan x$

A1A1 N2
c) METHOD 1

Evidence of using the quotient rule
(M1)

A1A1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x \times \frac{1}{x}-\ln x}{x^{2}}$

On interval $[-2,0]$, a ward A1
for decreasing Al for concave for decreasing, Al for concave
up. On for increasing, Al for concave On interval [1,2], award A for change of concavity, $A 1$ for concave down.

$$
\text { Substituting }\left(9 a+3 \ln (2 a-5)-\frac{1}{2(2 a-5)}\right)-\left(27+3 \ln 1-\frac{1}{2}\right)
$$

Setting up an equation

$$
9 a-\frac{1}{2(2 a-5)}-27+\frac{1}{2}+3 \ln (2 a-5)-3 \ln 1=\left(\frac{28}{3}+3 \ln 3\right)
$$

Solving gives $a=4$

OR
Evidence of using $f^{\prime}(x)=0$
Finding $f^{\prime}(x)=3 x^{2}-6 x-24$
$3 x^{2}-6 x-24=0$
Solutions $x=-2 \quad$ or $\quad x=4$
THEN
Coordinates are $\mathrm{P}(-2,29)$ and $\mathrm{Q}(4,-79)$
(b)

(i) $(4,29)$

A1 N 1
(ii) $(-2,-79)$

A1 N1
14. Using $V=\int \pi y^{2} \mathrm{~d} x$
(M1)
Correctly integrating $\int\left(x^{\frac{1}{2}}\right)^{2} \mathrm{~d} x=\frac{x^{2}}{2}$

$$
\begin{equation*}
V=\pi\left[\frac{x^{2}}{2}\right]_{0}^{a} \tag{A1}
\end{equation*}
$$

$$
=\frac{\pi a^{2}}{2}
$$

Setting up their equation $\left(\frac{1}{2} \pi a^{2}=0.845 \pi\right)$

$$
a^{2}=1.69
$$

$$
a=1.3 \mathrm{~A} 1
$$

Recognizing that tangents parallel to the x-axis mean maximum
and minimum (may be seen on sketch)
Sketch of graph of f
Sketch of graph of f

