Exan	n Revi	ew Calculus			
1.	Attem	pting to integrate.	(M1)		
	y = x	x^3-5x+c	(A1)(A1)(A1)		
	substit	ute (2, 6) to find c $(6 = 2^3 - 5(2) + c)$	(M1)		
	c = 8		(A1)		
	y = x	$x^3 - 5x + 8$ (Accept $x^3 - 5x + 8$)		(C6)	
2.	(a)	$x = \frac{1}{5}$ or $5x - 1 = 0$	(A1)	(N1)	1
	(b)	$f'(x) = \frac{(5x-1)(6x) - (3x^2)(5)}{(5x-1)^2}$	(M1)(A1)		
		$=\frac{30x^2-6x-15x^2}{(5x-1)^2} $ (may be implied)	(A1)		
		$=\frac{15x^2-6x}{(5x-1)^2} (\operatorname{accept} a = 15, b = -6)$	(A1)	(N2)	4
3.	(a)	 (i) intersection points x =3.77, x = 8.30 (may be seen as the limits) approach involving subtraction and integrals fully correct expression 	(A1)(A1) (M1) A2		
		$eg \int_{3.77}^{8.30} ((-4\cos(0.5x)+2) - (\ln(3x-2)+1)) dx,$ $\int_{3.77}^{8.30} g(x) dx - \int_{3.77}^{8.30} f(x) dx$		N5	
		(ii) $A = 6.46$	A1	N1	
	(b)	(i) $f'(x) = \frac{3}{3x-2}$	A1A1	N2	
		Note: Award A1 for numerator (3), A1 for denominator (3x - 2), but penalize I mark for additional terms.			
		 (ii) g'(x) = 2 sin (0.5x) Note: Award A1 for 2, A1 for sin (0.5x), but penalize 1 mark for additional terms. 	A1A1	N2	
	(c)	evidence of using derivatives for gradients correct approach	(M1) (A1)		
		egf'(x) = g'(x), points of intersection x = 1.43, x = 6.10	A1A1	N2N2	
4.	(a)				

Note: Award A1 for negative gradient throughout, A1 for x- intercept of q. It need not be linear.

(b)

5.

6.

[6]

[5]

[14]

1

A1A1 N2

 x - coordinate

 (i) Maximum point on f

 r

 (i) Inflexion point on f

(i) initexion point on j		
	A1	N
	A1	N
METHOD 1		
Second derivative is zero, second derivative changes sign. METHOD 2	R1R1	N
There is a maximum on the graph of the first derivative.	R2	N
evidence of factorizing 3/division by 3	A1	
$eg \int_{1}^{5} 3f(x) dx = 3 \int_{1}^{5} f(x) dx, \frac{12}{3}, \int_{1}^{5} \frac{3f(x) dx}{3}$		
(do not accept 4 as this is show that) evidence of stating that reversing the limits changes the sign	A1	
	AI	
$eg \int_{5}^{1} f(x) dx = -\int_{1}^{5} f(x) dx$		
$\int_{5}^{1} f(x) \mathrm{d}x = -4$	AG	N
evidence of correctly combining the integrals (seen anywhere)	(A1)	
$eg I = \int_{1}^{2} (x + f(x)) dx + \int_{2}^{5} (x + f(x)) dx = \int_{1}^{5} (x + f(x)) dx$		
evidence of correctly splitting the integrals (seen anywhere)	(A1)	
$eg I = \int_{1}^{5} x dx + \int_{1}^{5} f(x) dx$		
$\int x dx = \frac{x^2}{2}$ (seen anywhere)	A1	
$\int_{1}^{5} x dx = \left[\frac{x^{2}}{2}\right]_{1}^{5} = \frac{25}{2} - \frac{1}{2} \left(=\frac{24}{2}, 12\right)$	A1	
<i>I</i> = 16	A1	N
$f'(x) = x^2 + 4x - 5$	A1A1A1	ľ
evidence of attempting to solve $f'(x) = 0$ evidence of correct working	(M1) A1	
$eg(x+5)(x-1), \frac{-4\pm\sqrt{16+20}}{2}, \text{ sketch}$	AI	
x = -5, x = 1	(A1)	
so $x = -5$	A1	ľ
METHOD 1		
f''(x) = 2x + 4 (may be seen later) evidence of setting second derivative = 0 eg 2x + 4 = 0	A1 (M1)	
x = -2 A1	N2	
METHOD 2		

[7]

[6]

2

evidence of use of symmetry (M1) eg midpoint of max/min, reference to shape of cubic correct calculation A1 $eg \frac{-5+1}{2}$ x = -2A1 (M1) (d) attempting to find the value of the derivative when x = 3f'(3) = 16A1 valid approach to finding the equation of a line $eg \ y - 12 = 16(x - 3), \ 12 = 16 \times 3 + b$ M1 y = 16x - 36A1 N2

Notes:	On interval [-2,0], award A1 for decreasing, A1 for concave up. On interval [0,1], award A1 for increasing, A1 for concave up. On interval [1,2], award A1 for change of concavity, A1 for concave down.	
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\cos3x$		
dv r	2	

(b)
$$\frac{dy}{dx} = \frac{x}{\cos^2 x} + \tan x$$
 accept $x \sec^2 x + \tan x$

METHOD 1 (c)

8.

(a)

Evidence of using the quotient rule

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x \times \frac{1}{x} - \ln x}{x^2}$$

$$\frac{dy}{dx} = \frac{1 - \ln x}{x^2}$$
METHOD 2

 $y = x^{-1} \ln x$ Evidence of using the product rule

$$\frac{dy}{dx} = x^{-1} \times \frac{1}{x} + \ln x(-1)(x^{-2})$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x^2} - \frac{\ln x}{x^2}$$

9. (a)

A1A1A1	N3

	Award A1 for the left branch in approximately correct position,
	A1 for the right branch in approximately correct position.
5	

Notes: Award A1 for both asymptotes shown. The asymptotes need not be labelled.

(b) (i)
$$y = 3, x = \frac{5}{2}$$
 (must be equations) A1A1 N2

(ii)
$$x = \frac{14}{6} \left(\frac{7}{3} \text{ or } 2.33, \text{ also accept} \left(\frac{14}{6}, 0 \right) \right)$$
 A1 N1

(iii)
$$y = \frac{14}{6} (y=2.8) \left(\operatorname{accept} \left(0, \frac{14}{5} \right) \operatorname{or} \left(0, 2.8 \right) \right)$$
 A1 N1

(c) (i)
$$\int \left(9 + \frac{6}{2x-5} + \frac{1}{(2x-5)^2}\right) dx = 9x + 3\ln(2x-5) - \frac{1}{2(2x-5)} + C$$

A1A1 N5

A1

4

A1A1A1

(ii) Evidence of using $V = \int_{-\infty}^{\infty} \pi y^2 dx$ (M1)

Correct expression

$$eg \int_{3}^{a} \pi \left(3 + \frac{1}{2x - 5}\right)^{2} dx, \pi \int_{3}^{a} \left(9 + \frac{6}{2x - 5} + \frac{1}{(2x - 5)^{2}}\right) dx,$$
$$\left[9x + 3\ln(2x - 5) - \frac{1}{2(2x - 5)}\right]_{3}^{a}$$

[6]

N2

A1A1A1A1A1A1 N6

A1 N1

A1A1 N2

(M1)

A1A1

[14]

N3

N3

(M1)

A1A1

Substituting
$$\left(9a+3\ln(2a-5)-\frac{1}{2(2a-5)}\right)-\left(27+3\ln 1-\frac{1}{2}\right)$$

Setting up an equation

$$9a - \frac{1}{2(2a-5)} - 27 + \frac{1}{2} + 3\ln(2a-5) - 3\ln 1 = \left(\frac{28}{3} + 3\ln 3\right)$$
Solving gives $a = 4$

10. $f'(x) = 12x^2 + 2$ When x = 1, f(1) = 6 (seen anywhere) When x = 1, f'(1) = 14Evidence of taking the negative reciprocal $eg \frac{-1}{14}x, \frac{1}{-14}, -0.0714$

Equation is
$$y-6 = -\frac{1}{14}(x-1)\left(y=-\frac{1}{14}x+\frac{85}{14}, y=-0.0714x+6.07\right)$$

11. (a) (i)
$$p = 1, q = 5$$
 (or $p = 5, q = 1$)
(ii) $x = 3$ (must be an equation)
(b) $y = (x - 1)(x - 5)$
 $= x^2 - 6x + 5$
 $= (x - 3)^2 - 4$ (accept $h = 3, k = -4$)

(c)
$$\frac{dy}{dx} = 2(x-3) (=2x-6)$$

(d) When $x = 0$, $\frac{dy}{dx} = -6$

y-5 = -6(x-0) (y = -6x + 5 or equivalent)

12. (a) Evidence of using
$$a = \frac{dv}{dt}$$

 $eg 3e^{3t-2}$

a(1) = 3e (= 8.15) (b) Attempt to solve $e^{3t-2} = 22.3$ eg (3t-2) (ln e) = ln 22.3, sketch t = 1.70A1

(c) Evidence of using $s = \int v dt$ (limits not required)

$$e.g. \int e^{3t-2} dt, \frac{1}{3} \left[e^{3t-2} \right]_{0}^{1}$$
$$\frac{1}{3} \left(e^{1} - e^{-2} \right) \left[= \frac{1}{3} \left(e^{-e^{-2}} \right) = 0.861 \right]$$

13. (a) EITHER

Recognizing that tangents parallel to the x-axis mean maximum and minimum (may be seen on sketch) Sketch of graph of f

A1

(M1)

A1 N1

R1

M1

[6]

5

 OR
 M1

 Evidence of using f'(x) = 0 M1

 Finding $f'(x) = 3x^2 - 6x - 24$ A1

 $3x^2 - 6x - 24 = 0$ Solutions x = -2 or x = 4

 THEN
 Coordinates are P(-2, 29) and Q(4, -79)

 A1A1 NIN1

A1 N1 A1 N1

(M1)

A1

A1

M1

N2

14. Using $V = \int \pi y^2 dx$

Correctly integrating $\int \left(x^{\frac{1}{2}}\right)^2 dx = \frac{x^2}{2}$

$$V = \pi \left[\frac{x^2}{2}\right]_0^a$$

$$=\frac{\pi a^2}{2}$$
 (A1)

Setting up **their** equation
$$\left(\frac{1}{2}\pi a^2 = 0.845\pi\right)$$

 $a^2 = 1.69$

a = 1.3 A1

[6]

6