Topic 3 Review [82 marks]

The following diagram shows a circular play area for children.

The circle has centre O and a radius of 20 m , and the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D lie on the circle. Angle AOB is 1.5 radians.

1a. Angle BOC is 2.4 radians.
Find the length of arc ADC.

Markscheme

appropriate method to find angle AOC (M1)
e.g. $2 \pi-1.5-2.4$
correct substitution into arc length formula (A1)
e.g. $(2 \pi-3.9) \times 20,2.3831853 \ldots \times 20$
arc length $=47.6637 \ldots$
arc length $=47.7(47.6,47.7]$ (i.e. do not accept 47.6) A1 \quad 22
Notes: Candidates may misread the question and use $\mathrm{A} \widehat{\mathrm{O}} \mathrm{C}=2.4$. If working shown, award M0 then $\boldsymbol{A 0 M R A 1}$ for the answer 48.
Do not then penalize $\mathrm{A} \widehat{\mathrm{O}} \mathrm{C}$ in part (d) which, if used, leads to the answer 679.498...
However, if they use the prematurely rounded value of 2.4 for $\mathrm{A} \widehat{\mathrm{O}} \mathrm{C}$, penalise 1 mark for premature rounding for the answer 48 in (c). Do not then penalize for this in (d).

[3 marks]

Markscheme

Note: In this question, do not penalise for missing or incorrect units. They are not included in the markscheme, to avoid complex answer lines.

METHOD 1

choosing cosine rule (must have cos in it) (M1)
e.g. $c^{2}=a^{2}+b^{2}-2 a b \cos C$
correct substitution (into rhs) A1
e.g. $20^{2}+20^{2}-2(20)(20) \cos 1.5, \mathrm{AB}=\sqrt{800-800 \cos 1.5}$
$\mathrm{AB}=27.26555 \ldots$
$\mathrm{AB}=27.3[27.2,27.3] \quad$ A1 \quad N2
[3 marks]

METHOD 2

choosing sine rule (M1)
e.g. $\frac{\sin A}{a}=\frac{\sin B}{b}, \frac{\mathrm{AB}}{\sin O}=\frac{\mathrm{AO}}{\sin B}$
correct substitution A1
e.g. $\frac{\mathrm{AB}}{\sin 1.5}=\frac{20}{\sin (0.5(\pi-1.5))}$
$\mathrm{AB}=27.26555 \ldots$
$\mathrm{AB}=27.3[27.2,27.3] \quad$ A1 \quad N2
[3 marks]

1c. Find the area of triangle AOB.

Markscheme

correct substitution into area formula A1
e.g. $\frac{1}{2}(20)(20) \sin 1.5, \frac{1}{2}(20)(27.2655504 \ldots) \sin (0.5(\pi-1.5))$
area $=199.498997 \ldots($ accept $199.75106=200$, from using 27.3 $)$
area $=199[199,200] \quad$ A1 N1
[2 marks]

1d. Angle BOC is 2.4 radians.
Find the area of the shaded region.

Markscheme

calculating sector area using their angle AOC (A1)
e.g. $\frac{1}{2}(2.38 \ldots)\left(20^{2}\right), 200(2.38 \ldots), 476.6370614 \ldots$
shaded area $=$ their area of triangle $\mathrm{AOB}+$ their area of sector $\quad(M 1)$
e.g. $199.4989973 \ldots+476.6370614 \ldots, 199+476.637$
shaded area $=676.136 \ldots($ accept $675.637 \ldots=676$ from using 199 $)$
shaded area $=676[676,677] \quad$ A1 N2
[3 marks]

The shaded region is to be painted red. Red paint is sold in cans which cost $\$ 32$ each. One can covers $140 \mathrm{~m}^{2}$. How much does it cost to buy the paint?

Markscheme

dividing to find number of cans (M1)
e.g. $\frac{676}{140}, 4.82857 \ldots$

5 cans must be purchased (A1)
multiplying to find cost of cans (M1)
e.g. $5(32), \frac{676}{140} \times 32$
cost is 160 (dollars) A1 N3
[4 marks]

Let $f(x)=\cos 2 x$ and $g(x)=2 x^{2}-1$.

2a. Find $f\left(\frac{\pi}{2}\right)$.

Markscheme

$f\left(\frac{\pi}{2}\right)=\cos \pi \quad$ (AI)
$\begin{array}{lll}-1 & A 1 & N 2\end{array}$
[2 marks]

Let $f(x)=\cos 2 x$ and $g(x)=2 x^{2}-1$.

2b. Find $(g \circ f)\left(\frac{\pi}{2}\right)$.

Markscheme

$$
\begin{aligned}
& (g \circ f)\left(\frac{\pi}{2}\right)=g(-1) \quad\left(=2(-1)^{2}-1\right) \\
& =1 \quad \text { A1 } \quad \text { N2 } 2
\end{aligned}
$$

[2 marks]

Markscheme

$(g \circ f)(x)=2(\cos (2 x))^{2}-1 \quad\left(=2 \cos ^{2}(2 x)-1\right) \quad$ AI
evidence of $2 \cos ^{2} \theta-1=\cos 2 \theta$ (seen anywhere) (M1)
$(g \circ f)(x)=\cos 4 x$
$k=4 \quad$ A1 $\quad N 2$
[3 marks]

Let $f(x)=(\sin x+\cos x)^{2}$.
3. Show that $f(x)$ can be expressed as $1+\sin 2 x$.

Markscheme

attempt to expand (M1)
e.g. $(\sin x+\cos x)(\sin x+\cos x)$; at least 3 terms
correct expansion A1
e.g. $\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x$
$f(x)=1+\sin 2 x \quad$ AG \quad NO
[2 marks]

The diagram below shows part of the graph of $f(x)=a \cos (b(x-c))-1 \quad$, where $a>0$.

The point $\mathrm{P}\left(\frac{\pi}{4}, 2\right)$ is a maximum point and the point $\mathrm{Q}\left(\frac{3 \pi}{4},-4\right)$ is a minimum point.

4a. Find the value of a.

Markscheme

evidence of valid approach (M1)
e.g. $\frac{\max y \text { value }-\min y \text { value }}{2}$, distance from $y=-1$
$a=3 \quad$ A1 \quad N2
[2 marks]

The diagram below shows part of the graph of $f(x)=a \cos (b(x-c))-1 \quad$, where $a>0$.

The point $\mathrm{P}\left(\frac{\pi}{4}, 2\right)$ is a maximum point and the point $\mathrm{Q}\left(\frac{3 \pi}{4},-4\right)$ is a minimum point.

4b. (i) Show that the period of f is π.
(ii) Hence, find the value of b.

Markscheme

(i) evidence of valid approach (M1)
e.g. finding difference in x-coordinates, $\frac{\pi}{2}$
evidence of doubling $\boldsymbol{A 1}$
e.g. $2 \times\left(\frac{\pi}{2}\right)$
period $=\pi \quad A G \quad N O$
(ii) evidence of valid approach (M1)
e.g. $b=\frac{2 \pi}{\pi}$
$b=2 \quad A 1 \quad N 2$
[4 marks]

4c. Given that $0<c<\pi$, write down the value of c.

Markscheme

$$
c=\frac{\pi}{4} \quad A 1 \quad N 1
$$

[1 mark]

$$
\text { Let } f(x)=\frac{3 x}{2}+1, g(x)=4 \cos \left(\frac{x}{3}\right)-1 . \text { Let } h(x)=(g \circ f)(x) .
$$

5a. Find an expression for $h(x)$.

Markscheme

attempt to form any composition (even if order is reversed) (M1)
correct composition $h(x)=g\left(\frac{3 x}{2}+1\right) \quad(A 1)$
$h(x)=4 \cos \left(\frac{\frac{3 x}{2}+1}{3}\right)-1 \quad\left(4 \cos \left(\frac{1}{2} x+\frac{1}{3}\right)-1,4 \cos \left(\frac{3 x+2}{6}\right)-1\right) \quad$ A1 \quad N3
[3 marks]

Let $f(x)=\frac{3 x}{2}+1 \quad, g(x)=4 \cos \left(\frac{x}{3}\right)-1$. Let $h(x)=(g \circ f)(x)$.

5b. Write down the period of h.

Markscheme

```
period is 4\pi(12.6) A1 N1
```

[1 mark]

5c. Write down the range of h.

Markscheme

range is $-5 \leq h(x) \leq 3 \quad([-5,3]) \quad$ A1A1 \quad N2
[2 marks]

6a. Show that $4-\cos 2 \theta+5 \sin \theta=2 \sin ^{2} \theta+5 \sin \theta+3$

Markscheme

attempt to substitute $1-2 \sin ^{2} \theta$ for $\cos 2 \theta \quad$ (M1)
correct substitution A1
e.g. $4-\left(1-2 \sin ^{2} \theta\right)+5 \sin \theta$
$4-\cos 2 \theta+5 \sin \theta=2 \sin ^{2} \theta+5 \sin \theta+3 \quad \boldsymbol{A G} \quad$ NO
[2 marks]

6b. Hence, solve the equation $4-\cos 2 \theta+5 \sin \theta=0$ for $0 \leq \theta \leq 2 \pi$.

Markscheme

evidence of appropriate approach to solve (M1)
e.g. factorizing, quadratic formula
correct working A1
e.g. $(2 \sin \theta+3)(\sin \theta+1),(2 x+3)(x+1)=0 \quad, \sin x=\frac{-5 \pm \sqrt{1}}{4}$
correct solution $\sin \theta=-1$ (do not penalise for including $\sin \theta=-\frac{3}{2}$
$\theta=\frac{3 \pi}{2} \quad$ A2 $\quad N 3$
[5 marks]

The following diagram represents a large Ferris wheel at an amusement park.
The points P, Q and R represent different positions of a seat on the wheel.

The wheel has a radius of 50 metres and rotates clockwise at a rate of one revolution every 30 minutes.
A seat starts at the lowest point P , when its height is one metre above the ground.

7a. Find the height of a seat above the ground after 15 minutes.

Markscheme

valid approach (M1)
e.g. 15 mins is half way, top of the wheel, $d+1$
height $=101$ (metres) A1 N2
[2 marks]

7b. After six minutes, the seat is at point Q . Find its height above the ground at Q .

Markscheme

evidence of identifying rotation angle after 6 minutes AI
e.g. $\frac{2 \pi}{5}, \frac{1}{5}$ of a rotation, 72°
evidence of appropriate approach (M1)
e.g. drawing a right triangle and using cosine ratio
correct working (seen anywhere) A1
e.g. $\cos \frac{2 \pi}{5}=\frac{x}{50} \quad, 15.4(508 \ldots)$
evidence of appropriate method M1
e.g. height $=$ radius $+1-15.45 \ldots$
height $=35.5$ (metres) (accept 35.6) A1 N2
[5 marks]

7c. The height of the seat above ground after t minutes can be modelled by the function $h(t)=50 \sin (b(t-c))+51$.
Find the value of b and of c.

Markscheme

METHOD 1

evidence of substituting into $b=\frac{2 \pi}{\text { period }} \quad$ (M1)
correct substitution
e.g. period $=30$ minutes, $b=\frac{2 \pi}{30} \quad$ A1
$b=0.209\left(\frac{\pi}{15}\right) \quad$ A1 \quad N2
substituting into $h(t) \quad$ (M1)
e.g. $h(0)=1, h(15)=101$
correct substitution A1
$1=50 \sin \left(-\frac{\pi}{15} c\right)+51$
$c=7.5 \quad$ A1 \quad N2

METHOD 2

evidence of setting up a system of equations (M1)
two correct equations
e.g. $1=50 \sin b(0-c)+51 \quad, 101=50 \sin b(15-c)+51 \quad$ A1A1
attempt to solve simultaneously (M1)
e.g. evidence of combining two equations
$b=0.209\left(\frac{\pi}{15}\right), c=7.5 \quad$ A1A1 \quad N2N2
[6 marks]

7d. The height of the seat above ground after t minutes can be modelled by the function $h(t)=50 \sin (b(t-c))+51$. Hence find the value of t the first time the seat is 96 m above the ground.

Markscheme

evidence of solving $h(t)=96 \quad(M 1)$
e.g. equation, graph
$t=12.8$ (minutes) A2 N3
[3 marks]

Consider the following circle with centre O and radius r.

The points P, R and Q are on the circumference, $\mathrm{P} \widehat{\mathrm{O}}=2 \theta$, for $0<\theta<\frac{\pi}{2}$.

Markscheme

correct substitution into cosine rule A1
e.g. $\mathrm{PQ}^{2}=r^{2}+r^{2}-2(r)(r) \cos (2 \theta) \quad, \mathrm{PQ}^{2}=2 r^{2}-2 r^{2}(\cos (2 \theta))$
substituting $1-2 \sin ^{2} \theta$ for $\cos 2 \theta$ (seen anywhere) AI
e.g. $\mathrm{PQ}^{2}=2 r^{2}-2 r^{2}\left(1-2 \sin ^{2} \theta\right)$
working towards answer (A1)
e.g. $\mathrm{PQ}^{2}=2 r^{2}-2 r^{2}+4 r^{2} \sin ^{2} \theta$
recognizing $2 r^{2}-2 r^{2}=0$ (including crossing out) (seen anywhere)
e.g. $\mathrm{PQ}^{2}=4 r^{2} \sin ^{2} \theta, \mathrm{PQ}=\sqrt{4 r^{2} \sin ^{2} \theta}$
$\mathrm{PQ}=2 r \sin \theta \quad A \boldsymbol{G} \quad N 0$
[4 marks]

8b. Let l be the length of the arc PRQ .
Given that $1.3 \mathrm{PQ}-l=0$, find the value of θ.

Markscheme

$$
\mathrm{PRQ}=r \times 2 \theta \text { (seen anywhere) }
$$

correct set up A1
e.g. $1.3 \times 2 r \sin \theta-r \times(2 \theta)=0$
attempt to eliminate r (M1)
correct equation in terms of the one variable θ (A1)
e.g. $1.3 \times 2 \sin \theta-2 \theta=0$
1.221496215
$\theta=1.22\left(\operatorname{accept} 70.0^{\circ}(69.9)\right) \quad$ A1 N3
[5 marks]

8c. Consider the function $f(\theta)=2.6 \sin \theta-2 \theta$, for $0<\theta<\frac{\pi}{2}$.
(i) Sketch the graph of f.
(ii) Write down the root of $f(\theta)=0$.

Markscheme

(i)

Note: Award $\boldsymbol{A 1}$ for approximately correct shape, $\boldsymbol{A 1}$ for x-intercept in approximately correct position, $\boldsymbol{A 1}$ for domain. Do not penalise if sketch starts at origin.
(ii) 1.221496215
$\theta=1.22 \quad$ A1 \quad N1
[4 marks]

8d. Use the graph of f to find the values of θ for which $l<1.3 \mathrm{PQ}$.

Markscheme

evidence of appropriate approach (may be seen earlier) M2
e.g. $2 \theta<2.6 \sin \theta, 0<f(\theta)$, showing positive part of sketch
$0<\theta<1.221496215$
$0<\theta=1.22$ (accept $\theta<1.22$) A1 N1
[3 marks]

Consider the triangle ABC , where $\mathrm{AB}=10, \mathrm{BC}=7$ and $\mathrm{C} \widehat{\mathrm{A}}=30^{\circ}$.

9a. Find the two possible values of $\mathrm{A} \widehat{\mathrm{C}} \mathrm{B}$.

Markscheme

Note: accept answers given in degrees, and minutes.

$$
\text { evidence of choosing sine rule } \quad(\mathbf{M 1})
$$

e.g. $\frac{\sin A}{a}=\frac{\sin B}{b}$
correct substitution A1
e.g. $\frac{\sin \theta}{10}=\frac{\sin 30^{\circ}}{7} \quad, \sin \theta=\frac{5}{7}$
$\mathrm{A} \widehat{\mathrm{CB}}=45.6^{\circ}, \mathrm{A} \widehat{\mathrm{CB}}=134^{\circ} \quad$ A1A1 N1N1
Note: If candidates only find the acute angle in part (a), award no marks for (b).
[4 marks]

Markscheme

```
attempt to substitute their larger value into angle sum of triangle (M1)
e.g. 180 }-(134.415\ldots... + 30 ) 
A\widehat{BC}=15.\mp@subsup{6}{}{\circ}}\quadA1\quadN
[2 marks]
```

