The following diagram shows a circular play area for children.

![Diagram of a circular play area](image)

The circle has centre O and a radius of 20 m, and the points A, B, C and D lie on the circle. Angle AOB is 1.5 radians.

1a. Find the length of arc ADC.

Markscheme

appropriate method to find angle AOC \((M1) \)

correct substitution into arc length formula \((A1) \)

e.g. \(2\pi - 1.5 - 2.4 \)

e.g. \((2\pi - 3.9) \times 20 = 2.3831853 \times 20 \)

arc length = 47.6637...

arc length = 47.7 (47.6, 47.7) (i.e. do not accept 47.6) \((A1) \ N2 \)

Notes: Candidates may misread the question and use \(\overline{AOC} = 2.4 \). If working shown, award \(M0 \) then \(A0MRA1 \) for the answer 48. Do not then penalize \(\overline{AOC} \) in part (d) which, if used, leads to the answer 679.498...

However, if they use the prematurely rounded value of 2.4 for \(\overline{AOC} \), penalise 1 mark for premature rounding for the answer 48 in (c). Do not then penalize for this in (d).

[3 marks]

1b. Find the length of the chord \([AB]\).
METHOD 1
choosing cosine rule (must have cos in it) \((M1) \)
e.g. \(c^2 = a^2 + b^2 - 2ab \cos C \)
correct substitution into rhs \(A1 \)
e.g. \(20^2 + 20^2 - 2(20)(20) \cos 1.5 \), \(AB = \sqrt{800 - 800 \cos 1.5} \)

\(AB = 27.3 \) \([27.2, 27.3] \) \(A1 \) \(N2 \)

[3 marks]

METHOD 2
choosing sine rule \((M1) \)
e.g. \(\frac{\sin A}{a} = \frac{\sin B}{b} \), \(\frac{AB}{\sin O} = \frac{AO}{\sin B} \)
correct substitution \(A1 \)
e.g. \(\frac{AB}{\sin 1.5} = \frac{20}{\sin(0.5(\pi - 1.5))} \)

\(AB = 27.3 \) \([27.2, 27.3] \) \(A1 \) \(N2 \)

[3 marks]

1c. Find the area of triangle AOB.

[2 marks]

METHOD 1

correct substitution into area formula \(A1 \)
e.g. \(\frac{1}{2}(20)(20) \sin 1.5 \), \(\frac{1}{2}(20)(27.26555) \sin(0.5(\pi - 1.5)) \)
area = 199.498997... (accept 199.75106 = 200, from using 27.3)
area = 199 \([199, 200] \) \(A1 \) \(N1 \)

[2 marks]

1d. Angle BOC is 2.4 radians.

Find the area of the shaded region.

[3 marks]

METHOD 1
calculating sector area using their angle AOC \((A1) \)
e.g. \(\frac{1}{2}(2.38...)(20^2) \), 200(2.38...), 476.6370614...
shaded area = their area of triangle AOB + their area of sector \((M1) \)
e.g. 199.498997... + 476.6370614..., 199 + 476.637
shaded area = 676.136... (accept 675.637... = 676 from using 199)
shaded area = 676 \([676, 677] \) \(A1 \) \(N2 \)

[3 marks]
Angle BOC is 2.4 radians.

The shaded region is to be painted red. Red paint is sold in cans which cost $32 each. One can covers 140 m². How much does it cost to buy the paint?

Markscheme

dividing to find number of cans \((MI)\)

e.g. \(\frac{376}{140} \approx 2.76 \ldots\)

5 cans must be purchased \((AI)\)

multiplying to find cost of cans \((MI)\)

e.g. \(5(32) \times \frac{676}{140} = 160\) (dollars) \((AI)\)

[4 marks]

Let \(f(x) = \cos 2x\) and \(g(x) = 2x^2 - 1\).

2a. Find \(f\left(\frac{\pi}{2}\right)\).

Markscheme

\(f\left(\frac{\pi}{2}\right) = \cos\pi\) \((AI)\)

\(= -1\) \((AI)\)

[2 marks]

Let \(f(x) = \cos 2x\) and \(g(x) = 2x^2 - 1\).

2b. Find \((g \circ f)\left(\frac{\pi}{2}\right)\).

Markscheme

\((g \circ f)\left(\frac{\pi}{2}\right) = g(-1) = 2(-1)^2 - 1\) \((AI)\)

\(= 1\) \((AI)\)

[2 marks]

2c. Given that \((g \circ f)(x)\) can be written as \(\cos(kx)\), find the value of \(k, k \in \mathbb{Z}\).

Markscheme

\((g \circ f)(x) = 2(\cos(2x))^2 - 1\) \((= 2\cos^2(2x) - 1)\) \((AI)\)

evidence of \(2\cos^2\theta - 1 = \cos 2\theta\) (seen anywhere) \((MI)\)

\((g \circ f)(x) = \cos 4x\)

\(k = 4\) \((AI)\)

[3 marks]
Let \(f(x) = (\sin x + \cos x)^2 \).

Show that \(f(x) \) can be expressed as \(1 + \sin 2x \). \([2 \text{ marks}]\)

Markscheme

attempt to expand \((M1)\)
e.g. \((\sin x + \cos x)(\sin x + \cos x)\); at least 3 terms
correct expansion \(A1\)
e.g. \(\sin^2 x + 2 \sin x \cos x + \cos^2 x\)
\(f(x) = 1 + \sin 2x\) \(AG\) \(N0\)
\([2 \text{ marks}]\)

The diagram below shows part of the graph of \(f(x) = a \cos(b(x - c)) - 1 \), where \(a > 0 \).

The point \(P \left(\frac{\pi}{4}, 2 \right) \) is a maximum point and the point \(Q \left(\frac{3\pi}{4}, -4 \right) \) is a minimum point.

4a. Find the value of \(a \). \([2 \text{ marks}]\)

Markscheme
evidence of valid approach \((M1)\)
e.g. \(\frac{\text{max } y \text{ value} - \text{min } y \text{ value}}{2}\), distance from \(y = -1 \)
\(a = 3\) \(A1\) \(N2\)
\([2 \text{ marks}]\)
The diagram below shows part of the graph of \(f(x) = a \cos (b(x - c)) - 1 \), where \(a > 0 \).

\[
\begin{align*}
P \left(\frac{\pi}{4}, 2 \right) & \\
Q \left(\frac{3\pi}{4}, -4 \right) & \\
\end{align*}
\]

The point \(P \left(\frac{\pi}{4}, 2 \right) \) is a maximum point and the point \(Q \left(\frac{3\pi}{4}, -4 \right) \) is a minimum point.

4b. (i) Show that the period of \(f \) is \(\pi \).

(ii) Hence, find the value of \(b \).

Markscheme

(i) evidence of valid approach \((M1) \)

- e.g. finding difference in \(x \)-coordinates, \(\frac{\pi}{2} \)
 - evidence of doubling \(A1 \)
 - e.g. \(2 \times \left(\frac{\pi}{2} \right) \)
 - period = \(\pi \) \(AG \) \(N0 \)

(ii) evidence of valid approach \((M1) \)

- e.g. \(b = \frac{2\pi}{\pi} \)
 - \(b = 2 \) \(A1 \) \(N2 \)

[4 marks]

4c. Given that \(0 < c < \pi \), write down the value of \(c \).

Markscheme

\(c = \frac{\pi}{4} \) \(A1 \) \(N1 \)

[1 mark]

Let \(f(x) = \frac{3x}{2} + 1 \), \(g(x) = 4 \cos \left(\frac{x}{2} \right) - 1 \). Let \(h(x) = (g \circ f)(x) \).

5a. Find an expression for \(h(x) \).

[3 marks]
Markscheme

5a.

Let \(f(x) = \frac{3x}{2} + 1 \) , \(g(x) = 4 \cos \left(\frac{x}{3} \right) - 1 \). Let \(h(x) = (g \circ f)(x) \).

5b. Write down the period of \(h \).

Markscheme

period is \(4\pi(12.6) \) \(AI \quad N1 \)

[1 mark]

5c. Write down the range of \(h \).

Markscheme

range is \(-5 \leq h(x) \leq 3 \) \([-5, 3] \) \(A1A1 \quad N2 \)

[2 marks]

6a. Show that \(4 - \cos 2\theta + 5 \sin \theta = 2\sin^2 \theta + 5\sin \theta + 3 \).

Markscheme

attempt to substitute \(1 - 2\sin^2 \theta \) for \(\cos 2\theta \) \((MI) \)
correct substitution \(A1 \)
e.g. \(4 - (1 - 2\sin^2 \theta) + 5\sin \theta \)
\(4 - \cos 2\theta + 5 \sin \theta = 2\sin^2 \theta + 5 \sin \theta + 3 \) \(AG \quad N0 \)

[2 marks]

6b. Hence, solve the equation \(4 - \cos 2\theta + 5 \sin \theta = 0 \) for \(0 \leq \theta \leq 2\pi \).

Markscheme

evidence of appropriate approach to solve \((MI) \)
e.g. factorizing, quadratic formula
correct working \(A1 \)
e.g. \((2\sin \theta + 3)(\sin \theta + 1) \) , \((2x + 3)(x + 1) = 0 \) , \(\sin x = \frac{-5 + \sqrt{49}}{4} \)
correct solution \(\sin \theta = -1 \) (do not penalise for including \(\sin \theta = -\frac{3}{2} \)) \((AI) \)
(\(\theta = \frac{3\pi}{2} \) \(A2 \quad N3 \)

[5 marks]
The following diagram represents a large Ferris wheel at an amusement park.

The points P, Q and R represent different positions of a seat on the wheel.

The wheel has a radius of 50 metres and rotates clockwise at a rate of one revolution every 30 minutes.

A seat starts at the lowest point P, when its height is one metre above the ground.

7a. Find the height of a seat above the ground after 15 minutes. [2 marks]

Markscheme
valid approach \((M1)\)
e.g. 15 mins is half way, top of the wheel, \(d + 1\)
height = 101 (metres) \(A1\) \(N2\)

[2 marks]

7b. After six minutes, the seat is at point Q. Find its height above the ground at Q. [5 marks]

Markscheme
evidence of identifying rotation angle after 6 minutes \(A1\)
e.g. \(\frac{2\pi}{5} \times \frac{1}{5}\) of a rotation, 72°
evidence of appropriate approach \((M1)\)
e.g. drawing a right triangle and using cosine ratio
correct working (seen anywhere) \(A1\)
e.g. \(\cos \frac{2\pi}{5} = \frac{50}{x} \), 15.4(508…)
evidence of appropriate method \(M1\)
e.g. height = radius + 1 − 15.45…
height = 35.5 (metres) (accept 35.6) \(A1\) \(N2\)

[5 marks]

7c. The height of the seat above ground after \(t\) minutes can be modelled by the function \(h(t) = 50\sin(b(t - c)) + 51\). [6 marks]

Find the value of \(b\) and of \(c\).
Markscheme

METHOD 1

evidence of substituting into \(b = \frac{2\pi}{\text{period}} \) (MI)
correct substitution
e.g. period = 30 minutes, \(b = \frac{2\pi}{30} \) \(A1 \)

\(b = 0.209 \ (\frac{\pi}{15}) \) \(A1 \ N2 \)

substituting into \(h(t) \) (MI)
e.g. \(h(0) = 1, h(15) = 101 \)
correct substitution \(A1 \)

\(1 = 50 \sin \left(\frac{\pi}{15}c \right) + 51 \)

\(c = 7.5 \) \(A1 \ N2 \)

METHOD 2
evidence of setting up a system of equations (MI)
two correct equations
e.g. \(1 = 50 \sin b(0 - c) + 51, 101 = 50 \sin b(15 - c) + 51 \) \(A1A1 \)

attempt to solve simultaneously (MI)
e.g. evidence of combining two equations

\(b = 0.209 \ (\frac{\pi}{15}) \) \(A1A1 \)

\(c = 7.5 \) \(N2N2 \)

[6 marks]

7d. The height of the seat above ground after \(t \) minutes can be modelled by the function \(h(t) = 50 \sin(b(t - c)) + 51 \) .

Hence find the value of \(t \) the first time the seat is 96 m above the ground.

Markscheme
evidence of solving \(h(t) = 96 \) (MI)
e.g. equation, graph

\(t = 12.8 \) (minutes) \(A2 \ N3 \)

[3 marks]

Consider the following circle with centre \(O \) and radius \(r \).

The points \(P, R \) and \(Q \) are on the circumference, \(P\hat{O}Q = 2\theta \), for \(0 < \theta < \frac{\pi}{2} \).

8a. Use the cosine rule to show that \(PQ = 2r \sin \theta \). [4 marks]
Markscheme

correct substitution into cosine rule \(A1 \)
e.g. \(PQ^2 = r^2 + r^2 - 2(r)(r) \cos(2\theta) \), \(PQ^2 = 2r^2 - 2r^2(\cos(2\theta)) \)
substituting \(1 - 2\sin^2\theta \) for \(\cos(2\theta) \) (seen anywhere) \(A1 \)
e.g. \(PQ^2 = 2r^2 - 2r^2(1 - 2\sin^2\theta) \)
working towards answer \(A1 \)
e.g. \(PQ^2 = 4r^2\sin^2\theta \), \(PQ = \sqrt{4r^2\sin^2\theta} \)
PQ = 2r\sin\theta \(AG \) \(N0 \)

\([4 \text{ marks}] \)

8b. Let \(l \) be the length of the arc \(PRQ \).

Given that \(1.3PQ - l = 0 \), find the value of \(\theta \).

Markscheme

\(PRQ = r \times 2\theta \) (seen anywhere) \(A1 \)
correct set up \(A1 \)
e.g. \(1.3 \times 2r\sin\theta - r \times (2\theta) = 0 \)
attempt to eliminate \(r \) \(M1 \)
correct equation in terms of the one variable \(\theta \) \(A1 \)
e.g. \(1.3 \times 2\sin\theta - 2\theta = 0 \)
1.221496215
\(\theta = 1.22 \) (accept 70.0° (69.9)) \(A1 \) \(N3 \)

\([5 \text{ marks}] \)

8c. Consider the function \(f(\theta) = 2.6\sin\theta - 2\theta \), for \(0 < \theta < \frac{\pi}{2} \).

(i) Sketch the graph of \(f \).

(ii) Write down the root of \(f(\theta) = 0 \).
Markscheme

(i)

![Diagram]

Note: Award A1 for approximately correct shape, A1 for x-intercept in approximately correct position, A1 for domain. Do not penalise if sketch starts at origin.

(ii) 1.221496215

$\theta = 1.22$ \hspace{1cm} A1 \hspace{1cm} N1

[4 marks]

8d. Use the graph of f to find the values of θ for which $l < 1.3PQ$.

[3 marks]

Markscheme

Evidence of appropriate approach (may be seen earlier) \hspace{1cm} M2

e.g. $2\theta < 2.6\sin \theta$, $0 < f(\theta)$, showing positive part of sketch

$0 < \theta < 1.221496215$

$0 < \theta < 1.22$ (accept $\theta < 1.22$) \hspace{1cm} A1 \hspace{1cm} N1

[3 marks]

Consider the triangle ABC, where $AB = 10$, $BC = 7$ and $\angle BAC = 30^\circ$.

9a. Find the two possible values of $\angle ABC$.

[4 marks]

Markscheme

Note: accept answers given in degrees, and minutes.

Evidence of choosing sine rule \hspace{1cm} M1

e.g. $\frac{\sin \hat{A}}{a} = \frac{\sin \hat{B}}{b}$

correct substitution \hspace{1cm} A1

e.g. $\frac{\sin \theta}{10} = \frac{\sin 30^\circ}{7}$, $\sin \theta = \frac{5}{7}$

$\angle ABC = 45.6^\circ$, $\angle ACB = 134^\circ$ \hspace{1cm} A1A1 \hspace{1cm} N1N1

Note: If candidates only find the acute angle in part (a), award no marks for (b).

[4 marks]
9b. Hence, find $\hat{A}\hat{B}\hat{C}$, given that it is acute.

Markscheme

attempt to substitute their larger value into angle sum of triangle \((M1)\)

e.g. $180^\circ - (134.415^\circ + 30^\circ)$

$A\hat{B}\hat{C} = 15.6^\circ \quad AI \quad N2$

[2 marks]