1.	(a)	correct end points $max = 27, min = 4$	(A1)(A1)			
		range = 23	A1	N3	3	
	(b)	Graph 3	A2	N2	2	[5]
2.	(a)	18		A1	N1	
	(b)	(i) 10		A2	N2	
		(ii) 44		A2	N2	[5]
3.	(a)	evidence of using $\sum f_i = 100$	(M1)			
		k = 4	A1	N2		
	(b)	(i) evidence of median position $e.g. 50^{\text{th}}$ item, $26 + 10 + 20 = 56$	(M1)			
		median = 3	A1	N2		
		(ii) $Q_1 = \text{and } Q_3 = 5$ interquartile range = 4 (accept 1 to 5 or 5–1, <i>etc.</i>)	(A1)(A1) A1	N3		[7]
4.	(a)	median $m = 32$	A1	N1		
	(b)	lower quartile $Q_1 = 22$, upper quartile $Q_3 = 40$ interquartile range = 18	(A1)(A1) A1	N3		

(c)

5.

Time (minutes)	Number of students
$0 \le t < 10$	5
$10 \le t < 20$	11
$20 \le t < 30$	20
$30 \le t < 40$	24
$40 \le t < 50$	14
$50 \le t < 60$	6

A1A1 N2

[6]

a = 55, b = 75

[6]

A1A1 N1N1

6.	(a)	(i) $m = 165$	A1	N1	
		(ii) Lower quartile $(1^{st} \text{ quarter}) = 160$ Upper quartile $(3^{rd} \text{ quarter}) = 170$ IQR = 10	(A1) (A1) A1	N3	
	(b)	Recognize the need to use the 40^{th} percentile, or 48^{th} student <i>eg</i> a horizontal line through $(0, 48)$	(M1)	110	
		<i>a</i> = 163	A1	N2	[6]

7.
$$b = 3, c = 3$$
 A1A1 N2
using mean $\left(\frac{a+b+c+d}{4}=4\right)$ M1

using range
$$(d - a = 6)$$
 M1

 $a = 2, d = 8$
 A1A1
 N2

[6]

8.	(a)	(i) $r = 10$	A2	N2
		(ii) $s = 13$	A2	N2
	(b)	Using $\frac{\sum x}{12} = 10$	A1	
		t = 18	A1	N1

 9.
 (a)
 D
 B
 C
 A1A1A1
 N3

 (b)
 B
 A
 C
 A1A1A1
 N3

10.	(a)	3	A1	N1
	(b)	6	A2	N2

(c)	Recognizing the link between 6 and the upper quartile eg 25% scored greater than 6,	(M1)		
	0.25×32	(A1)		
	8	A1	N3	[6]

11.	(a)	(i)	50 (accept 49, "fewer than 50")	A1	N1
		(ii)	Cumulative frequency $(7) = 90$	(A1)	
			90 - 50	(M1)	
			= 40	A1	N2
		(iii)	75th or 75.5th person median = 6.25 (min), 6 min 15 secs	A1 A1	N1
	(b)		ence of finding 40% (60%) of 150 aber spending less than k minutes is $(150 - 60) = 90$	M1 (A1) A1	N2

(c) (i)

t (minutes)	$0 \le t < 2$	$2 \le t < 4$	$4 \le t < 6$	$6 \le t < 8$	$8 \le t < 10$	$10 \le t < 12$
Frequency	10	23	37	38	27	15
					А	1A1A1 N3

(ii) Evidence of using **all** correct mid-interval values (1, 3, 5, 7, 9, 11) A1

mean =
$$\left(\frac{1 \times 10 + 3 \times 23 + 5 \times 37 + 7 \times 38 + 9 \times 27 + 11 \times 15}{150}\right)$$

= 6.25 (min), 6 min 15 secs A1 N1

[14]

Lines on graph	(M1)	
100 students score 40 marks or fewer.	A1	2
Identifying 200 and 600	A1	
Lines on graph.	(M1)	
a = 55, b = 75.	A1A1	4
	100 students score 40 marks or fewer. Identifying 200 and 600 Lines on graph.	100 students score 40 marks or fewer.A1Identifying 200 and 600A1Lines on graph.(M1)

13. (a) mean =
$$\sum \frac{x}{n} \left(= \frac{2230}{45} \right)$$
 (M1)

 $\bar{x} = 49.6$ (Accept 50) (A1) (C2)

(b)
$$\overline{y} = \frac{\sum y}{n+2}$$
 (may be implied) (M1)

$$\sum y = 2230 + 37 + 30 \tag{A1}$$

$$\overline{y} = \frac{2297}{47} \tag{A1}$$

$$=48.9$$
 (Accept 49) (A1) (C4)

[6]

14. (a) 76 (mice) (A1) (N1)

(c) (i)
$$p = 76 - (16 + 22) = 38$$
 (allow **ft** from (ii) (a)) (A1) (N1)
 $q = 132 - 76 = 56$ (A1) (N1)
(ii) $x = \frac{7.5 \times 16 + \dots 14.5 \times 23}{16 + \dots 23} \left(= \frac{3363}{300} \right)$ (M1)

$$= 11.2$$
 (accept 11.21) (A1) (N2)

[6]

15. (a)

Mark (<i>x</i>)	$0 \le x < 20$	$20 \le x < 40$	$40 \le x < 60$	$60 \le x < 80$	$80 \le x < 100$
Number of Students	22	50 (±1)	66 (±1)	42 (±1)	20
				(A1)(A1)(A1) (C3)

(b)	40th Percentile \Rightarrow 80th student fails, (mark 42%)	(M2)
	Pass mark 43% (Accept mark $>$ 42.)	(A1) (C3)

16. List of frequencies with p in the middle

<i>eg</i> 5 + 10, <i>p</i> , 6 + 2 \Rightarrow 15, 8, or 15 < $\frac{23 + p}{2}$, or <i>p</i> > 7.	(M1)		
Consideration that $p < 10$ because 2 is the mode or discretionary for further processing.	(M1)		
Possible values of p are 8 and 9	(A2)(A2)	(C6)	[6]

17.	(a)	line(s) on graph median is 183	(M1) (A1) (C2)
	(b)	Lower quartile $Q_1 = 175$	(A1)
		Upper quartile $Q_3 = 189$	(A1)

IQR is 14		
(Accept 189 – 175, 175 to 189, 189 to 175 and 175 – 189)	(M1)(A1) (C4)	
		[6]

18. $d = 11; c = 11$	(A1)(A1)(C1)(C1)
d-a=8 (or $11-a=8$) a=3	(A1) (A1) (C2)
$\frac{3+b+11+11}{4} = 8 \left(\text{or } \frac{\text{sum}}{4} = 8 \right)$	(A1)
b = 7	(A1) (C2)

		$ \begin{array}{c} 90\\ 60\\ 70\\ 60\\ 60\\ 90\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	
	(a)	(i) Correct lines drawn on graph, $(A1)(C1)$ median = 20 $(A1)(C1)$	
		(ii) Correct lines drawn on graph, $UQ = Q_3 = 24$ (A1)(C1) (A1)(C1)	
		$IQR = Q_3 - Q_1 (or UQ - LQ) $ (M1) = 10 (accept 14 to 24) (A1) (C2) Note: Accept 14 to 24, 24 to 14, 14 - 24 or 24 - 14.	
			[6]
20.	Oct-D	5670 + 2430	
		$x = \frac{12}{12} \tag{M1}$	
	mean	= 675 (A1) (C6)	[6]
21.	(a)	(i) median fare = $24 (\pm 0.5)$ (A1)	
		(ii) fare $\leq $35 =>$ number of cabs is 154 (or 153) (A1) 2	
		40% of cabs = 80 cabs(A1)fares up to \$22(A1)distance = \$22 \div \$0.55(M1)	

 lates up to \$22
 (A1)

 distance = $$22 \div 0.55 (M1)

 a = 40 km (A1)

4

(c) Distance 90 km => fare = 90 × \$0.55 = \$49.50 (A1) Fare \$49.50 => number of cabs = 200 -186 (M1) = 14 (A1) Thus percentage is $\frac{14}{200} = 7\%$ (A1) 4 [10]

22.	Median = middle value $\Rightarrow b = 11$	(A1)
	Mean = $\frac{a+b+c}{3} = \frac{a+11+c}{3} = 9 \Longrightarrow a+11+c = 27$	(M1)
	=> a + c = 16	(A1)
	Range = c - a = 10	(M1)(A1)
	Solving equations simultaneously gives $a = 3$	(A1) (C6)

Notes: Award (A1) for correct axes, scales and labelling, (A1) for correctly plotted points. Award (A2) for good curve correctly drawn, (A1) for badly drawn, correct curve. Award (A1) for a correct polygon.

23.

(a)

(b) $Q_1 = 135 \pm 5$ $Q_3 = 240 \pm 5$ (M1)(A1) Interquartile range = 105 ± 10. (Accept 135 - 240 or 240 - 135.) (A1) 3 *Note:* Award (M1) for the correct lines on the graph. (c) a = 94 - 87 = 7, b = 100 - 94 = 6

(A1)(A1) 2

(d) mean =
$$\frac{12(50) + 46(150) + 29(250) + 7(350) + 6(450)}{100}$$
 (M1)
= 199 or \$199000 (A1)
OR
mean = 199 or \$199000 (G2) 2

(e) (i) $$350000 \Rightarrow 91.5$ Number of *De luxe* houses $\simeq 100 - 91.5$ (M1) = 9 or 8 (A1)

(ii) P (both > 400000) =
$$\frac{6}{9}\left(\frac{5}{8}\right) = \frac{5}{12} \operatorname{or} \frac{6}{8}\left(\frac{5}{7}\right) = \frac{15}{28}$$
 (M1)(A1) 4
Note: Award (M1)(A0) for the answers $\frac{4}{9} \operatorname{or} \frac{9}{16}$ obtained
from correct independent probabilities.

[15]

24. (a) s = 7.41(3 sf)

(G3) 3

(b)								
Weight (W)	$W \le 85$	$W \leq 90$	$W \leq 95$	$W \leq 100$	$W \le 105$	$W \leq 110$	$W \le 115$	
Number of packets	5	15	30	56	69	76	80	
							(A1)	1

(c)	(i)	From the graph, the median is approximately 96.8.		
		Answer: 97 (nearest gram).	(A2)	
	(ii)	From the graph, the upper or third quartile is approximately 101	.2.	
		Answer: 101 (nearest gram).	(A2)	4

(d) Sum = 0, since the sum of the deviations from the mean is zero. (A2) **OR**

$$\sum (W_i - \overline{W}) = \sum W_i - \left(80\frac{\sum W_i}{80}\right) = 0$$
(M1)(A1) 2

(e) Let A be the event: W > 100, and B the event: $85 < W \le 110$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
(M1)

$$\mathbf{P}(A \cap B) = \frac{20}{80} \tag{A1}$$

$$\mathbf{P}(B) = \frac{71}{80} \tag{A1}$$

$$P(A \mid B) = 0.282 \tag{A1}$$

OR

71 packets with weight $85 < W \le 110$.	(M1)		
Of these, 20 packets have weight $W > 100$.	(M1)		
Required probability = $\frac{20}{71}$	(A1)		
= 0.282	(A1)	4	
<i>Notes:</i> Award (A2) for a correct final answer with no reasoning. Award up to (M2) for correct reasoning or method.			

[14]

25.	$(10 \times 1) + (20 \times 2) + (30 \times 5) + (40 \times k) + (50 \times 3)$	- 31	(M1)(A1)	
23.		- 34	(WII)(AI)	
	$\frac{40k+350}{k+11} = 34$		(A1)	
	$\Rightarrow k = 4$		(A1) (C4)) [4]
				ניין

26. (a)

(d)	Median = 87 ± 2	(A1)		
	Lower quartile = 65 ± 2	(A1)		
	Upper quartile = 123 ± 2	(A1)	3	[10]

27. (a)

Mark	≤ 10	≤ 20	≤ 30	≤ 40	≤ 50	≤ 60	≤ 70	≤ 80	≤ 90	≤ 100
No. of Candidates	15	65	165	335	595	815	905	950	980	1000
								(1.0)		

(A3) 3

Note: Award (A1) for 165, (A1) for 1000, (A1) if all other entries are correct.

5

(c)	(i)	Median = 46	(M1)(A1)		
	(ii)	Scores < 35: 240 candidates	(M1)(A2)		
	(iii)	Top 15% \Rightarrow Mark \ge 63	(M1)(A1)(A1)	8	
		<i>Notes:</i> Accept the answers from the student's graph. In each part, award (M1) for the dotted lines on the graph.			

[16]

28. Mean =
$$\frac{(72 \times 1.79) + (28 \times 1.62)}{100}$$
 (M1)(M1)
= 1.7424 (= 1.74 to 3 sf) (A1) (C4) [4]

29. (a)
$$m = \frac{300}{25}$$
 (M1)
= 12 (A1) (C2)

(b)
$$s = \sqrt{\left(\frac{625}{25}\right)}$$
 (M1)
= 5 (A1) (C2)