1. (a) correct end points
(A1)(A1)
$\max =27, \min =4$
range $=23$
A1 N3 3
(b) Graph 3

A2 N2 2
2. (a) 18
(b) (i) 10
(ii) 44

A2 N 2
3. (a) evidence of using $\sum f_{\mathrm{i}}=100$
$k=4$
A1 N2
(b) (i) evidence of median position
e.g. $50^{\text {th }}$ item, $26+10+20=56$
median $=3$
A1 N2
(ii) $\quad Q_{1}=$ and $Q_{3}=5$
interquartile range $=4$ (accept 1 to 5 or $5-1$, etc.)
(A1)(A1)
A1 N3
[7]
4. (a) median $m=32$

A1 N1
(b) lower quartile $Q_{1}=22$, upper quartile $Q_{3}=40$ interquartile range $=18$
(A1)(A1)
A1 N3
(c)

Time (minutes)	Number of students
$0 \leq t<10$	5
$10 \leq t<20$	$\mathbf{1 1}$
$20 \leq t<30$	20
$30 \leq t<40$	24
$40 \leq t<50$	$\mathbf{1 4}$
$50 \leq t<60$	6

A1A1 N2
5.

(a) Lines on graph

100 students score 40 marks or fewer.
(M1)
A1 N2
(b) Identifying 200 and 600

Lines on graph
A1
(M1)
A1A1 N1N1
6. (a) (i) $m=165$

A1 N1
(ii) Lower quartile ($1^{\text {st }}$ quarter $)=160$

Upper quartile ($3^{\text {rd }}$ quarter) $=170$ (A1)

$$
\mathrm{IQR}=10
$$

A1 N3
(b) Recognize the need to use the $40^{\text {th }}$ percentile, or $48^{\text {th }}$ student (M1) $e g$ a horizontal line through $(0,48)$ $a=163$

A1 N 2
[6]
7. $b=3, c=3$
using mean $\left(\frac{a+b+c+d}{4}=4\right)$
A1A1 N2
using range ($d-a=6$) M1
$a=2, d=8$ A1A1 N2

[6]

8. (a) (i) $r=10$

A2 N 2
(ii) $s=13$

A2 N 2
(b) Using $\frac{\sum x}{12}=10$

A1

$$
t=18
$$

A1 N1
[6]
9. (a) D B C

A1A1A1 N3
(b) $\mathrm{B} \quad \mathrm{A} \quad \mathrm{C}$

A1A1A1 N3
[6]
10. (a) 3

A1 N1
(b) 6

A2 N 2
(c) Recognizing the link between 6 and the upper quartile eg 25% scored greater than 6 , 0.25×32
11. (a) (i) 50 (accept 49, "fewer than 50 ")

A1 N1
(ii) Cumulative frequency $(7)=90$

90-50
(M1)

$$
=40
$$

$$
\text { A1 } \mathrm{N} 2
$$

$\begin{array}{ll}\text { (iii) } & 75 \text { th or } 75.5 \text { th person } \\ & \text { median }=6.25(\mathrm{~min}), 6 \mathrm{~min} 15 \mathrm{secs}\end{array}$
(b) Evidence of finding 40% (60%) of 150 M1
(A1) A1 N2
(c) (i)

t (minutes)	$0 \leq t<2$	$2 \leq t<4$	$4 \leq t<6$	$6 \leq t<8$	$8 \leq t<10$	$10 \leq t<12$
Frequency	10	23	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{2 7}$	15

(ii) Evidence of using all correct mid-interval values (1, 3, 5, 7, 9, 11) A1

$$
\begin{array}{rlr}
\text { mean } & =\left(\frac{1 \times 10+3 \times 23+5 \times 37+7 \times 38+9 \times 27+11 \times 15}{150}\right) \\
& =6.25(\mathrm{~min}), 6 \mathrm{~min} 15 \mathrm{secs} & \text { A1 N1 }
\end{array}
$$

12.

Number
of
candidates

(a) Lines on graph

100 students score 40 marks or fewer.
(b) Identifying 200 and 600

Lines on graph.
A1
$a=55, b=75$.
A1A1 4
13. (a) $\operatorname{mean}=\sum \frac{x}{n}\left(=\frac{2230}{45}\right)$

$$
\bar{x}=49.6 \quad(\text { Accept } 50)
$$

(A1) (C2)
(b) $\bar{y}=\frac{\sum y}{n+2}($ may be implied $)$

$$
\begin{equation*}
\sum y=2230+37+30 \tag{A1}
\end{equation*}
$$

$\bar{y}=\frac{2297}{47}$
$=48.9($ Accept 49$)$
(A1) (C4)
[6]
14. (a) 76 (mice)
(A1) (N1)
(b) 11.2 (seconds)
(A1) (N1)
(c) (i) $p=76-(16+22)=38 \quad$ (allow ft from (ii) (a))
(A1) (N1)

$$
\begin{equation*}
q=132-76=56 \tag{M1}
\end{equation*}
$$

(ii) $x=\frac{7.5 \times 16+\ldots .14 .5 \times 23}{16+\ldots 23} \quad\left(=\frac{3363}{300}\right)$
$=11.2 \quad($ accept 11.21$)$
(A1) (N1)
(A1) (N2)
15. (a)

Mark (x)	$0 \leq x<20$	$20 \leq x<40$	$40 \leq x<60$	$60 \leq x<80$	$80 \leq x<100$
Number of Students	22	$\mathbf{5 0}(\pm 1)$	$\mathbf{6 6}(\pm 1)$	$\mathbf{4 2}(\pm 1)$	20
$(\mathrm{~A} 1)(\mathrm{A} 1)(\mathrm{A} 1)(\mathrm{C} 3)$					

(b) 40th Percentile \Rightarrow 80th student fails, (mark 42\%)

Pass mark 43\% (Accept mark > 42.)
(A1) (C3)
16. List of frequencies with p in the middle
$e g 5+10, p, 6+2 \Rightarrow 15,8$, or $15<\frac{23+p}{2}$, or $p>7$.
Consideration that $p<10$ because 2 is the mode or discretionary for further processing.
Possible values of p are 8 and 9
(A2)(A2) (C6)
[6]
17. (a) line(s) on graph
(M1) median is 183
(A1) (C2)
(b) Lower quartile $Q_{1}=175$
(A1)
Upper quartile $Q_{3}=189$
IQR is 14
(Accept $189-175,175$ to 189,189 to 175 and $175-189$)
(M1) (A1) (C4)

[6]

18. $d=11 ; c=11$
$d-a=8 \quad($ or $11-a=8)$
$a=3$
$\frac{3+b+11+11}{4}=8\left(\right.$ or $\left.\frac{\text { sum }}{4}=8\right)$
$b=7$
$(\mathrm{A} 1)(\mathrm{A} 1)(\mathrm{C} 1)(\mathrm{C} 1)$
(A1)
(A1) (C2)
(A1) (C2)
19.

(a) (i) Correct lines drawn on graph, median $=20$
(A1)(C1) (A1)(C1)
(ii) Correct lines drawn on graph, $\mathrm{UQ}=Q_{3}=24$
(A1)(C1)
(b) $\quad \begin{aligned} & \mathrm{IQR}=Q_{3}-Q_{1}(\text { or } \mathrm{UQ}-\mathrm{LQ}) \\ & =10 \text { (accept } 14 \text { to } 24)\end{aligned}$

Note: Accept 14 to 24, 24 to 14, $14-24$ or 24-14.
20. Jan-Sept $\quad \sum=630 \times 9=5670$

Oct-Dec $\quad \sum=810 \times 3=2430$
(M1)(A1)
(M1)(A1)
mean $=675$
(A1) (C6)
[6]
21. (a) (i) median fare $=\$ 24(\pm 0.5)$
(ii) fare $\leq \$ 35=>$ number of cabs is 154 (or 153)
(b) 40% of cabs $=80 \mathrm{cabs}$
fares up to $\$ 22$
distance $=\$ 22 \div \$ 0.55$
(A1)

$$
\begin{equation*}
a=40 \mathrm{~km} \tag{M1}
\end{equation*}
$$

(c) Distance $90 \mathrm{~km} \Rightarrow$ fare $=90 \times \$ 0.55$

$$
\begin{equation*}
=\$ 49.50 \tag{A1}
\end{equation*}
$$

Fare $\$ 49.50=>$ number of cabs $=200-186$

$$
\begin{equation*}
=14 \tag{M1}
\end{equation*}
$$

Thus percentage is $\frac{14}{200}=7 \%$
(A1) 4
22. Median $=$ middle value $=>b=11$

Mean $=\frac{a+b+c}{3}=\frac{a+11+c}{3}=9 \Rightarrow a+11+c=27$

$$
\begin{equation*}
\Rightarrow a+c=16 \tag{M1}
\end{equation*}
$$

Range $=c-a=10$
(M1)(A1)
Solving equations simultaneously gives $a=3$
23. (a)

Notes: Award (A1) for correct axes, scales and labelling, (A1)
for correctly plotted points.
Award (A2) for good curve correctly drawn, (A1) for badly
drawn, correct curve.
Award (A1) for a correct polygon.
(b) $\begin{aligned} \mathrm{Q}_{1}=135 \pm 5 \quad \mathrm{Q}_{3} & =240 \pm 5 \\ \text { Interquartile range } & =105 \pm 10 . \quad \text { (Accept } 135-240 \text { or } 240-135 .)(\mathrm{M} 1)(\mathrm{A} 1) \\ \text { Note: }: & \text { Award (M1) for the correct lines on the graph. }\end{aligned}$
(c) $\quad a=94-87=7, \quad b=100-94=6$
(A1)(A1) 2
(d) mean $=\frac{12(50)+46(150)+29(250)+7(350)+6(450)}{100}$
$=199$ or $\$ 199000$
(A1)
OR
mean $=199$ or $\$ 199000$
(G2) 2
(e) (i) $\$ 350000=>91.5$

Number of De luxe houses $\simeq 100-91.5$

$$
\begin{equation*}
=9 \text { or } 8 \tag{M1}
\end{equation*}
$$

(ii) $\mathrm{P}($ both $>400000)=\frac{6}{9}\left(\frac{5}{8}\right)=\frac{5}{12}$ or $\frac{6}{8}\left(\frac{5}{7}\right)=\frac{15}{28}$ (M1)(A1) 4

Note: Award (M1)(A0) for the answers $\frac{4}{9}$ or $\frac{9}{16}$ obtained from correct independent probabilities.
24. (a) $s=7.41(3 \mathrm{sf})$
(G3) 3
(b)

Weight (W)	$W \leq 85$	$W \leq 90$	$W \leq 95$	$W \leq 100$	$W \leq 105$	$W \leq 110$	$W \leq 115$
Number of packets	5	15	$\mathbf{3 0}$	$\mathbf{5 6}$	$\mathbf{6 9}$	$\mathbf{7 6}$	80

(A1) 1
(c) (i) From the graph, the median is approximately 96.8. Answer: 97 (nearest gram).
(ii) From the graph, the upper or third quartile is approximately 101.2. Answer: 101 (nearest gram). (A2) 4
(d) $\operatorname{Sum}=0$, since the sum of the deviations from the mean is zero. OR

$$
\begin{equation*}
\sum\left(W_{i}-\bar{W}\right)=\sum W_{i}-\left(80 \frac{\sum W_{i}}{80}\right)=0 \tag{A2}
\end{equation*}
$$

(M1)(A1)
2
(e) Let A be the event: $W>100$, and B the event: $85<W \leq 110$

$$
\begin{align*}
& \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} \tag{M1}\\
& \mathrm{P}(A \cap B)=\frac{20}{80} \tag{A1}\\
& \mathrm{P}(B)=\frac{71}{80} \tag{A1}\\
& \mathrm{P}(A \mid B)=0.282 \tag{A1}
\end{align*}
$$

OR

71 packets with weight $85<W \leq 110$.
(M1)
Of these, 20 packets have weight $W>100$.
(M1)
Required probability $=\frac{20}{71}$
(A1)

$$
=0.282
$$

Notes: Award (A2) for a correct final answer with no reasoning.
Award up to (M2) for correct reasoning or method.
25. $\frac{(10 \times 1)+(20 \times 2)+(30 \times 5)+(40 \times k)+(50 \times 3)}{k+11}=34$

$$
\frac{40 k+350}{k+11}=34
$$

$$
\Rightarrow k=4
$$

(A1) (C4)
26. (a)

x	15	45	75	105	135	165	195	225
f	5	15	33	21	11	7	5	3

$\bar{x}=97.2$ (exactly)
(A1) 2
(b)

x	30	60	90	120	150	180	210	240	
Σf	5	20	53	74	85	92	97	100	
Note: Award (A1) for correct values for $x, \Sigma f$					1				

(c)

(A4) 4
Notes: Award (A2) for 6 or more points correct, (A1) for $4 / 5$ points correct.
Award (A1) for a reasonable graph, (A1) for the correct axes and the given scales.
(d) Median $=87 \pm 2$ (A1)
Lower quartile $=65 \pm 2$
Upper quartile $=123 \pm 2$
(A1)
(A1) 3
[10]
27. (a)

Mark	≤ 10	≤ 20	≤ 30	≤ 40	≤ 50	≤ 60	≤ 70	≤ 80	≤ 90	≤ 100
No. of Candidates	15	65	$\mathbf{1 6 5}$	335	595	815	905	950	980	$\mathbf{1 0 0 0}$

Note: Award (A1) for 165, (A1) for 1000, (A1) if all other entries are correct.
(b)

(A5) 5
Notes: Vertical axis and scale
(Al)
Horizontal axis and scale
(Al)
Points
(A1)
Curve (allow polygon)
(A2)
(c) (i) Median $=46$
(M1)(A1)
(ii) Scores < 35: 240 candidates
(M1)(A2)
(iii) $\operatorname{Top} 15 \% \Rightarrow$ Mark $\geq 63 \quad$ (M1)(A1)(A1) 8

Notes: Accept the answers from the student's graph. In each part, award (M1) for the dotted lines on the graph.
28. \quad Mean $=\frac{(72 \times 1.79)+(28 \times 1.62)}{100}$ (M1)(M1)(M1)

$$
=1.7424(=1.74 \text { to } 3 \mathrm{sf})
$$

(A1) (C4)
29. (a) $m=\frac{300}{25}$ (M1)
$=12$
(A1) (C2)
(b) $s=\sqrt{\left(\frac{625}{25}\right)}$
(M1)
$=5$
(A1) (C2)

