1. (a) $\Sigma f x=1(2)+2(4)+\ldots+7(4), \Sigma f x=146+5 x$ (seen anywhere)
evidence of substituting into mean $=\frac{\sum f x}{\sum f}$
correct equation A1
e.g. $\frac{146+5 x}{34+x}=4.5,146+5 x=4.5(34+x)$
$x=14$
(b) $\sigma=1.54$
2. (a) (i) evidence of appropriate approach

$$
\text { e.g. } 9+25+35,34+35
$$

$$
p=69
$$

A1 N 2
(ii) evidence of valid approach e.g. 109 - their value of $p, 120-(9+25+35+11)$ $q=40$
(b) evidence of appropriate approach
e.g. substituting into $\frac{\sum f x}{n}$, division by 120
mean $=3.16$
(c) 1.09

A1 N1
3. (a) $\sigma=1.61$

A2 N 2
(b) median $=4.5$

A1 N1
(c) $Q_{1}=3, Q_{3}=5$ (may be seen in a box plot)
$\mathrm{IQR}=2$ (accept any notation that suggests the interval 3 to 5)
(A1)(A1)
A1 N3
[6]
4. (a) evidence of using mid-interval values (5, 15, 25, 35, 50, $67.5,87.5$)
(M1) $\sigma=19.8(\mathrm{~cm})$
(b) (i) $\quad Q_{1}=15, Q_{3}=40$
(A1)(A1)
$I Q R=25$ (accept any notation that suggests the interval 15 to 40)
A1 N3
(ii) METHOD 1
60% have a length less than k
(A1)
$0.6 \times 200=120$
(A1)
k30(cm)
A1 N2

METHOD 2

$$
\begin{aligned}
& 0.4 \times 200=80 \\
& 200-80=120
\end{aligned}
$$

$$
k=30(\mathrm{~cm})
$$

(c) $\quad l<20 \mathrm{~cm} \Rightarrow 70$ fish
(M1)
$\mathrm{P}($ small $)=\frac{70}{200}(=0.35)$
A1 N 2
(d)

Cost $\$ \boldsymbol{X}$	4	10	12
$\mathrm{P}(X=x)$	$\mathbf{0 . 3 5}$	0.565	$\mathbf{0 . 0 8 5}$

(e) correct substitution (of their p values) into formula for $\mathrm{E}(X)$
e.g. $4 \times 0.35+10 \times 0.565+12 \times 0.085$
$\mathrm{E}(X)=8.07$ (accept \$8.07)
A1 N2
5. (a) (i) $p=65$

A1 N1
(ii) for evidence of using sum is 125 (or $99-p$) $q=34$

A1 N2
(b) evidence of median position
e.g. $63^{\text {rd }}$ student, $\frac{125}{2}$
median is 17 (sit-ups)
A1 N 2
(c) evidence of substituting into $\frac{\sum f(x)}{125}$

$$
\begin{array}{ll}
\text { e.g. } \frac{15(11)+16(21)+17(33)+18(34)+19(18)+20(8)}{125}, \frac{2176}{125} \tag{M1}\\
\text { mean }=17.4 & \text { A1 }
\end{array}
$$

6. (a) $\mathrm{A}=18, \mathrm{~B}=19, \mathrm{C}=23, \mathrm{D}=31, \mathrm{E}=36$
(b) $\mathrm{IQR}=12$

A1 N1
7. (a) Correct mid interval values $14,23,32,41,50$

$$
\begin{aligned}
& \text { Substituting into } \frac{\sum f w}{\sum f} \\
& e g \bar{w}=\frac{7(14)+12(23)+13(32)+10(41)+8(50)}{50} \\
& \bar{w}=\frac{1600}{50} \\
& \bar{w}=32(\mathrm{~kg})
\end{aligned}
$$M1

$$
\text { AG } \quad \text { N0 }
$$

(b) METHOD 1

Total weight of other boxes $=1600-50 x$
Total number of other boxes $=50-x$
Setting up their equation
eg $\frac{1600-50 x}{50-x}=30,1600-50 x=1500-30 x$
$x=5$
A1 N3

METHOD 2

Let z be the number of other boxes in Class E (accept any symbol in the working, even including x).
Total weight of other boxes $=1200+50 z$
Total number of other boxes $=42+z$
Setting up their equation
eg $\frac{1200-50 z}{42+z}=30,1200+50 z=1260+30 z$
$z=3$
$x=5$
A1 N3
(c) Setting up their inequality

Correct substitution

$$
e g \frac{98+276+416+41(10+y)+400}{50+y}<33, \frac{1600-41 y}{50+y}<33
$$

$$
1600+41 y<1650+33 y
$$

$$
8 y<50(y<6.25)
$$

6

A1 N1
Note: If candidates don't use the mid-interval values, but assume that all the new boxes weigh the minimum amount for Class D, award marks as follows:

Setting up their inequality
Correct substitution
$e g \frac{1600-36.5 y}{50+y}<33$
$1600+36.5 y<1650+33 y$
$3.5 y<50(y<14.28 \ldots)$
14
8. (a)

Age range	Frequency	Mid - interval value
$0 \leq$ age <20	40	10
$20 \leq$ age <40	$\mathbf{7 0}$	$\mathbf{3 0}$
$40 \leq$ age <60	$\mathbf{1 0 0}$	$\mathbf{5 0}$
$60 \leq$ age <80	$\mathbf{5 0}$	$\mathbf{7 0}$
$80 \leq$ age ≤ 100	$\mathbf{1 0}$	$\mathbf{9 0}$

(b) For attempting to find $\sum f x$

Correct substitution
eg $40 \times 10+\ldots+10 \times 90=11900$
For dividing by 270
eg $\frac{11900}{270}$
Mean $=44.1$
A1 N4
9. (a) Mean $=\frac{\sum f x}{\sum f}$
$\sum f x=(1)(0)+(2)(4)+(3)(6)+(4)(k)+(5)(8)+(6)$
(6) $+(7)(6)$
$\sum f k+30$
Using mean $4.6=\frac{144+4 k}{k+30}$
$4.6 k+138=144+4 k$
$0.6 k=6$
$k=10$
(A1) (C5)
(b) Mode $=4$
(A1) (C1)
(accept 5, if $k<8$)
10.

x	f	Σf
4	2	2
5	5	7
6	4	11
7	3	14
8	4	18
10	2	20
12	1	21

(a) $\mathrm{m}=6$
(A2) (C2)
(b) $\quad Q_{1}=5$
(c) $\quad Q_{3}=8$
$\mathrm{IQR}=8-5$
(M1)

$$
=3(\text { accept } 5-8 \text { or }[5,8])
$$

(A2) (C2)
(C2)
[6]
11. (a) Median = middle number of 75

$$
\begin{align*}
& =38 \text { th number } \\
& =4 \tag{A1}
\end{align*}
$$

(b) Mean $=\frac{5+18+48+72+100+42}{75}$

$$
\begin{align*}
& =\frac{285}{75} \tag{M1}\\
& =3.8
\end{align*}
$$

$$
(\mathrm{A} 1) \quad(\mathrm{C} 2)
$$

12. (a) (Using mid-intervals)

$$
\begin{align*}
& \bar{v}=\frac{65(7)+75(25)+\ldots+135(5)}{7+25+\ldots+5} \tag{M1}\\
& =\frac{29450}{300}=98.2 \mathrm{~km} \mathrm{~h}^{-1} \tag{A1}
\end{align*}
$$

OR

$$
\bar{v}=98.2
$$

(G2) 2
(b) (i) $\quad a=165, b=275$
(ii)

Note: Award (A1) for properly marked scales and axes, (A2) for 9 correctly plotted points, (A1) for 7 or 8 points, (A1) for a smooth curve through the points.
(c) (i) Vertical line on graph at $105 \mathrm{~km} \mathrm{~h}^{-1}$
$\frac{300-200}{300} \times 100 \%=33.3(\pm 1.3 \%)$
OR
$33.3(\pm 1.3 \%)$
(A2)
(ii) 15% of $300=45 \quad 300-45=255$

Horizontal line on graph at 255 cars
Speed $=114\left(\pm 2 \mathrm{~km} \mathrm{~h}^{-1}\right)$
OR
Speed $=114\left(\pm 2 \mathrm{~km} \mathrm{~h}^{-1}\right)$
(A2) 4
[11]
13. (a) (i) 10
(A1)
(ii) $14+10=24$
(A1) 2
(b)

Note: Award (A0) for using the mid-interval values of 14.5, 24.5 etc.
(i) $\mu=63$
(ii) $\sigma=20.5(3 \mathrm{sf})$
(A1) 4
(c) Assymetric diagram/distribution
(A1) 1
(d)

OR Median = 65
Note: This answer assumes appropriate use of a calculator with correct arguments.

OR Linear interpolation on the table:
$\left(\frac{48-40.5}{48-32}\right) \times 60+\left(\frac{40.5-32}{48-32}\right) \times 70=65(2 \mathrm{sf})$
(A1)(A1) 3
14. (a) $\bar{x}=\$ 59$

OR

$$
\begin{align*}
& \bar{x}=\frac{10 \times 24+30 \times 16+\ldots+110 \times 10+130 \times 4}{24+16+\ldots+10+4} \tag{M1}\\
& =\frac{7860}{134} \\
& =\$ 59
\end{align*}
$$

(A1) 2
(b)

Money (\$)	<20	<40	<60	<80	<100	<120	<140
Customers	24	40	$\mathbf{6 2}$	$\mathbf{1 0 2}$	$\mathbf{1 2 0}$	$\mathbf{1 3 0}$	$\mathbf{1 3 4}$

money (\$)
Note: Award (A1) for the correct scale, (A1) for the points, and (A2) for the curve.
(c) (i) $t=2 d^{2 / 3}+3$

Mean $d=59$
Mean $t \approx 2 \times(59)^{2 / 3}+3$
$\approx 33.3 \mathrm{~min} .(3 \mathrm{sf})($ accept 33.2$)$
(A1)
(ii) $t>37 \Rightarrow 2 d^{2 / 3}+3>37$
$2 d^{2 / 3}>34$
$d^{2 / 3}>17$
$d>(17)^{3 / 2}$
$d>70.1$
From the graph, when $d=70.1, n=82$
number of shoppers $=134-\mathbf{8 2}$
(A1) 8

