1.	(a)	$\Sigma f x = 1(2) + 2(4) + \dots + 7(4), \Sigma f x = 14$	46 + 5x (seen anywhere)	A1
		evidence of substituting into mean =	$\frac{\sum fx}{\sum f}$	(M1)
		correct equation		A1

e.g.
$$\frac{146+5x}{34+x} = 4.5, 146+5x = 4.5(34+x)$$

x = 14 A1 N2

(b)
$$\sigma = 1.54$$
 A2 N2

evidence of appropriate approach (M1) (a) (i) $e.g. 9 + 25 + \overline{35}, \overline{34} + 35$ p = 69N2 A1 evidence of valid approach (M1) (ii) e.g. 109 - their value of p, 120 - (9 + 25 + 35 + 11)N2 q = 40A1 evidence of appropriate approach (b) (M1) *e.g.* substituting into $\frac{\sum fx}{n}$, division by 120 mean = 3.16A1 N2 1.09 A1 N1 (c) [7] A2 N2 $\sigma = 1.61$ (a) (b) median = 4.5A1 N1 $Q_1 = 3$, $Q_3 = 5$ (may be seen in a box plot) (A1)(A1) (c) IQR = 2 (accept any notation that suggests the interval 3 to 5) A1 N3 [6] evidence of using mid-interval values (5, 15, 25, 35, 50, 67.5, 87.5) (M1) (a) $\sigma = 19.8 \, (cm)$ A2 N3 (b) (i) $Q_1 = 15, Q_3 = 40$ (A1)(A1) IQR = 25 (accept any notation that suggests the interval 15 to 40) A1 N3

2.

3.

4.

(ii) **METHOD 1**

60 % have a length less than k	(A1)	
$0.6 \times 200 = 120$	(A1)	
<i>k</i> 30 (cm)	A1	N2

METHOD 2

$0.4 \times 200 = 80$	(A1)	
200 - 80 = 120	(A1)	
k = 30 (cm)	A1	N2

(c)
$$l < 20 \text{ cm} \Rightarrow 70 \text{ fish}$$
 (M1)
 $P(\text{small}) = \frac{70}{200} (= 0.35)$ A1 N2

(d)								
	Cost \$X	4	10	12				
	$\mathbf{P}(X=x)$	0.35	0.565	0.085				
						A1A1	N2	
(e)	correct substitute.g. $4 \times 0.35 +$	ution (of the -10×0.565	ir p values) i + 12×0.085	nto formula 5	for $E(X)$	(A1)		
	E(X) = 8.07 (a	ccept \$8.07)	1			A1	N2	
								[15]

5.

- (a) (i) p = 65
 - (ii) for evidence of using sum is 125 (or 99 p) (M1) *q* = 34 A1 N2

evidence of median position (b) (M1)

e.g.
$$63^{\rm rd}$$
 student, $\frac{125}{2}$

median is 17 (sit-ups) A1 N2

A1

N1

(c) evidence of substituting into
$$\frac{\sum f(x)}{125}$$
 (M1)
e.g. $\frac{15(11)+16(21)+17(33)+18(34)+19(18)+20(8)}{125}, \frac{2176}{125}$
mean = 17.4 A1 N2

6. (a)
$$A = 18, B = 19, C = 23, D = 31, E = 36$$
 A1A1A1A1A1 N5

(b)
$$IQR = 12$$
 A1 N1 [6]

7. (a) Correct mid interval values 14, 23, 32, 41, 50 (A1)
Substituting into
$$\frac{\sum f w}{\sum f}$$
 M1
 $eg \ \overline{w} = \frac{7(14) + 12(23) + 13(32) + 10(41) + 8(50)}{50}$
 $\overline{w} = \frac{1600}{50}$ A1

$$\overline{w} = 32 \text{ (kg)}$$
 AG NO

[7]

(b) METHOD 1

Total weight of other boxes = $1600 - 50x$	(A1)
Total number of other boxes = $50 - x$	(A1)
Setting up their equation	M1

$$eg \ \frac{1600-50x}{50-x} = 30, \ 1600 - 50x = 1500 - 30x$$
$$x = 5$$
A1 N3

METHOD 2

Let z be the number of other boxes in Class E (accept any symbol in the working, even including x).

Total weight of other boxes = $1200 + 50z$	(A1)
Total number of other boxes = $42 + z$	(A1)
Setting up their equation	M1

$$eg \ \frac{1200-50z}{42+z} = 30, 1200 + 50z = 1260 + 30z$$
$$z = 3$$
$$x = 5$$
A1 N3

(c)	Setting up their ine	M1		
	Correct substitution	A1		
	$eg \frac{98+276+416}{50}$	$\frac{+41(10+y)+400}{0+y} < 33, \ \frac{1600-41y}{50+y} < 33$		
	1600 + 41y < 1650	+ 33 <i>y</i>	(A1)	
	8y < 50 (y < 6.25)		A1	
	6		A1	N1
	Note:	If candidates don't use the mid-interval values, but assume that all the new boxes weigh the minimum amount for Class D, award marks as follows:		
		Setting up their inequality	M1	
		Correct substitution	A1	
		$eg \ \frac{1600-36.5y}{50+y} < 33$		
		1600 + 36.5y < 1650 + 33y	(A1)	
		3.5 <i>y</i> < 50 (<i>y</i> < 14.28)	A1	
		14	A1	N1

8. (a)

Age range	Frequency	Mid - interval value
$0 \le age < 20$	40	10
$20 \le age < 40$	70	30
$40 \le age < 60$	100	50
$60 \le age < 80$	50	70
$80 \le age \le 100$	10	90

A1A1 N2

[12]

(b)	For attempting to find $\sum f x$	(M1)	
	Correct substitution	(A1)	
	$eg \ 40 \times 10 + \dots + 10 \times 90 = 11900$		
	For dividing by 270	(M1)	
	$eg \ \frac{11900}{270}$		
	Mean = 44.1	A1	N4

[6]

9.	(a)	$Mean = \frac{\sum f x}{\sum f}$		
		$\sum f x = (1) (0) + (2) (4) + (3) (6) + (4) (k) + (5) (8) + (6)$		
		$\overline{(6)}$ + (7) (6)	(A1)	
		$\sum f k + 30$	(A1)	
		Using mean 4.6 = $\frac{144+4k}{k+30}$	(M1)	
		4.6k + 138 = 144 + 4k	(A1)	
		$\begin{array}{l} 0.6k = 6\\ k = 10 \end{array}$	(A1) (C5)
	(b)	Mode = 4	(A1) (C1)

(accept 5, if k < 8)

[6]

		x	f	Σf
		4	2	2
		5	5	7
		6	4	11
		7	3	14
		8	4	18
		10	2	20
		12	1	21
(a)	m = 6			
(b)	$Q_1 = 5$	5		
	~1			
(c)	$Q_3 = 8$	3		
	IQR =	= 8 - 5	0	or [5 81)
		- 5 (acc	ept 5 – 8	0[[3, 0])
(a)	Media	n = middl	le number	of 75

11.	(a)	Median = middle number of 75 = 38 th number	(M1)
	= 4		(A1) (C2)
	(b)	Mean = $\frac{5+18+48+72+100+42}{75}$	(M1)
	$=\frac{285}{75}$		
		= 3.8	(A1) (C2)

[4]

12. (a) (Using mid-intervals)

$$\bar{v} = \frac{65(7) + 75(25) + ... + 135(5)}{7 + 25 + ... + 5}$$
 (M1)
 $= \frac{29450}{300} = 98.2 \text{ km h}^{-1}$ (A1)

$$\bar{v} = 98.2$$
 (G2) 2

Note: Award (A1) for properly marked scales and axes, (A2) for 9 correctly plotted points, (A1) for 7 or 8 points, (A1) for a smooth curve through the points.

(c)	(i)	Vertical line on graph at 105 km h^{-1}	(M1)
		$\frac{300-200}{300} \times 100\% = 33.3(\pm 1.3\%)$	(A1)
		OR	
		33.3(±1.3%)	(A2)

(ii)	$15\% \text{ of } 300 = 45 \qquad 300 - 45 = 255$		
	Horizontal line on graph at 255 cars	(M1)	
	Speed = $114(\pm 2 \text{ km h}^{-1})$	(A1)	
	OR		
	$a = 1 + 114(-0.1 + 1^{-1})$		

Speed =
$$114(\pm 2 \text{ km h}^{-1})$$
 (A2) 4

[11]

13. (a) (i) 10
 (A1)

 (ii)
$$14 + 10 = 24$$
 (A1) 2

(b)

$$\begin{array}{c|c|c} x_{i} & f_{i} \\ 15 & 1 \\ 25 & 5 \\ 35 & 7 \\ 45 & 9 \\ 55 & 10 \\ 65 & 16 \\ 75 & 14 \\ 85 & 10 \\ 95 & 8 \end{array} \right) (A1)$$

Note: Award (A0) for using the mid-interval values of 14.5, 24.5 etc.

(i)
$$\mu = 63$$
 (A1)

(ii)
$$\sigma = 20.5 (3 \text{ sf})$$
 (A1) 4

14.

$$\overline{x} = \frac{10 \times 24 + 30 \times 16 + \dots + 110 \times 10 + 130 \times 4}{24 + 16 + \dots + 10 + 4}$$
(M1)
= $\frac{7860}{134}$
= \$59 (A1) 2

(b)

(Π)	$l > 51 \rightarrow 2u + 5 > 51$	$(\mathbf{W}\mathbf{I}\mathbf{I})$
	$2d^{2/3} > 34$	
	$d^{2/3} > 17$	(A1)
	$d > (17)^{3/2}$	
	d > 70.1	
	From the graph, when $d = 70.1$, $n = 82$	(A1)
	number of shoppers = $134 - 82$	(A1)
	= 52	(A1)

[15]

8