1. (a)
$$P(X=2) = \frac{4}{14} \left(= \frac{2}{7} \right)$$

A1 N1 1

(b)
$$P(X=1) = \frac{1}{14}$$
 (A1)

$$P(X=k) = \frac{k^2}{14} \tag{A1}$$

setting the sum of probabilities = 1 M1

e.g.
$$\frac{1}{14} + \frac{4}{14} + \frac{k^2}{14} = 1, 5 + k^2 = 14$$

$$k^2 = 9\left(\operatorname{accept} \frac{k^2}{14} = \frac{9}{14}\right)$$
 A1

k = 3 AG N0 4

(c) correct substitution into
$$E(X) = \sum xP(X = x)$$
 A1

e.g.
$$1\left(\frac{1}{14}\right) + 2\left(\frac{4}{14}\right) + 3\left(\frac{9}{14}\right)$$

$$E(X) = \frac{36}{14} \left(= \frac{18}{7} \right)$$
 A1 N1 2

2. (a) (i) s = 1 A1 N1

(ii) evidence of appropriate approach

$$e.g. 21-16, 12+8-q=15$$

 $q=5$ A1 N2

(iii)
$$p = 7, r = 3$$
 A1A1 N2 5

(b) (i)
$$P(art|music) = \frac{5}{8}$$
 A2 N2

[7]

(ii) METHOD 1

$$P(\operatorname{art}) = \frac{12}{16} \left(= \frac{3}{4} \right)$$

A1

evidence of correct reasoning

R1

e.g.
$$\frac{3}{4} \neq \frac{5}{8}$$

the events are not independent

AG N0

METHOD 2

$$P(art) \times P(music) = \frac{96}{256} \left(= \frac{3}{8} \right)$$

A1

evidence of correct reasoning

R1

e.g.
$$\frac{12}{16} \times \frac{8}{16} \neq \frac{5}{16}$$

the events are not independent

AG N0

4

(c) P(first takes only music) =
$$\frac{3}{16}$$
 = (seen anywhere)

A1

P(second takes only art)= $\frac{7}{15}$ (seen anywhere)

A1

evidence of valid approach

(M1)

e.g.
$$\frac{3}{16} \times \frac{7}{15}$$

P(music and art)=
$$\frac{21}{240} \left(= \frac{7}{80} \right)$$

A1 N2

[13]

4

4

2

3. (a) (i)
$$n = 0.1$$

A1 N1

(ii)
$$m = 0.2, p = 0.3, q = 0.4$$

A1A1A1 N3

e.g.
$$P(B') = 1 - P(B)$$
, $m + q$, $1 - (n + p)$
 $P(B') = 0.6$

(M1)

[6]

4. (a) (i)
$$p = 0.2$$

A1 N1

(ii)
$$q = 0.4$$

A1 N1

(iii)
$$r = 0.1$$

A1 N1

(b)
$$P(A \mid B') = \frac{2}{3}$$

A2 N2

Note: Award A1 for an unfinished answer such as $\frac{0.2}{0.3}$.

R1

e.g.
$$\frac{2}{3} \neq 0.5, 0.35 \neq 0.3$$

thus, A and B are not independent

N₀ AG

[6]

5. (a) (i)
$$\frac{7}{24}$$

A1 N1

(M1)

e.g.
$$\frac{2}{3} \times \frac{5}{8}, \frac{1}{3} \times \frac{7}{8}$$

adding probabilities of two mutually exclusive paths

(M1)

e.g.
$$\left(\frac{1}{3} \times \frac{7}{8}\right) + \left(\frac{2}{3} \times \frac{3}{8}\right), \left(\frac{1}{3} \times \frac{1}{8}\right) + \left(\frac{2}{3} \times \frac{5}{8}\right)$$

A1 N2

$$P(F) = \frac{13}{24}$$

(b) (i) $\frac{1}{3} \times \frac{1}{8}$ $\frac{1}{24}$

(A1)

A1

(ii) recognizing this is
$$P(E \mid F)$$
 (M1)
$$e.g. \frac{7}{24} \div \frac{13}{24}$$

$$\frac{168}{312} \left(= \frac{7}{13} \right)$$
A2 N3

(c)				
	X (cost in euros)	0	3	6
	P (X)	$\frac{1}{9}$	$\frac{4}{9}$	$\frac{4}{9}$

A2A1 N3

(d) correct substitution into E(X) formula
$$e.g. \ 0 \times \frac{1}{9} + 3 \times \frac{4}{9} + 6 \times \frac{4}{9}, \frac{12}{9} + \frac{24}{9}$$

$$E(X) = 4 \text{ (euros)}$$
A1 N2

6. (a)
$$p = \frac{4}{5}$$
 A1 N1

(b) multiplying along the branches
$$e.g. \ \frac{1}{5} \times \frac{1}{4}, \frac{12}{40}$$
 adding products of probabilities of two mutually exclusive paths
$$e.g. \ \frac{1}{5} \times \frac{1}{4} + \frac{4}{5} \times \frac{3}{8}, \frac{1}{20} + \frac{12}{40}$$

$$P(B) = \frac{14}{40} \left(= \frac{7}{20} \right)$$
 A1 N2

(c) appropriate approach which must include
$$A'$$
 (may be seen on diagram) (M1)

e.g.
$$\frac{P(A' \cap B)}{P(B)}$$
 do not accept $\frac{P(A \cap B)}{P(B)}$

$$P(A' \mid B) = \frac{\frac{4}{5} \times \frac{3}{8}}{\frac{7}{20}}$$
 (A1)

$$P(A' \mid B) = \frac{12}{14} \left(= \frac{6}{7} \right)$$
 A1 N2

7. (a)
$$P(A) = \frac{1}{11}$$
 A1 N1

(b)
$$P(B \mid A) = \frac{2}{10}$$
 A2 N2

(c) recognising that
$$P(A \cap B) = P(A) \times P(B \mid A)$$
 (M1) correct values (A1)

$$e.g. P(A \cap B) = \frac{1}{11} \times \frac{2}{10}$$

$$P(A \cap B) = \frac{2}{110}$$

(c)
$$P(12) = \frac{1}{9}$$
, $P(13) = \frac{3}{9}$, $P(14) = \frac{3}{9}$, $P(15) = \frac{2}{9}$ A2 N2

[7]

A1

N3

(d) correct substitution into formula for E(X) A1

e.g. E(S) =
$$12 \times \frac{1}{9} + 13 \times \frac{3}{9} + 14 \times \frac{3}{9} + 15 \times \frac{2}{9}$$

$$E(S) = \frac{123}{9}$$
 A2 N2

(e) **METHOD 1**

correct expression for expected gain E(A) for 1 game

e.g.
$$\frac{4}{9} \times 50 - \frac{5}{9} \times 30$$

E(A) = $\frac{50}{9}$

amount at end = expected gain for 1 game
$$\times$$
 36 (M1) = 200 (dollars) A1 N2

METHOD 2

attempt to find expected number of wins and losses

(M1)

e.g.
$$\frac{4}{5} \times 36, \frac{5}{9} \times 36$$

attempt to find expected gain $F(G)$

attempt to find expected gain
$$E(G)$$
 (M1)
 $e.g. 16 \times 50 - 30 \times 20$
 $E(G) = 200 \text{ (dollars)}$ A1 N2

$$P(win) = P(H \cap W) + P(A \cap W)$$

$$= (0.65)(0.83) + (0.35)(0.26)$$

$$= 0.6305 \text{ (or } 0.631)$$
(M1)
A1
N2

[12]

(b) evidence of using complement
$$e.g. 1-p, 0.3695$$

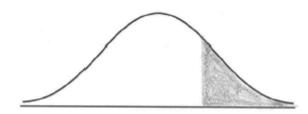
e.g.
$$P(H \mid W') = \frac{P(W' \cap H)}{P(W')}$$

correct substitution

e.g.
$$\frac{(0.65)(0.17)}{0.3695} \left(= \frac{0.1105}{0.3695} \right)$$
 A1

$$P(home) = 0.299$$
 A1 N3

10. (a)



A1A1 N2

(M1)

[8]

[6]

(M1)

Note: Award A1 for vertical line to right of mean, A1 for shading to right of **their** vertical line.

(b) evidence of recognizing symmetry *e.g.* 105 is one standard deviation above the mean so *d* is one standard deviation below the mean, shading the corresponding part,

$$105 - 100 = 100 - d$$

$$d = 95$$
 A1 N2

(c) evidence of using complement e.g. 1-0.32, 1-p (M1)

$$P(d < X < 105) = 0.68$$
 A1 N2

11. (a) (i) evidence of substituting into $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ (M1) e.g. 75 + 55 - 100, Venn diagram

(ii) 45 A1 N1

(b) (i) **METHOD 1**

evidence of using complement, Venn diagram
$$e.g. 1-p, 100-30$$
 (M1)

$$\frac{70}{100} \left(= \frac{7}{10} \right)$$
 A1 N2

METHOD 2

$$e.g. \ \frac{25}{100} + \frac{45}{100}$$

$$\frac{70}{100} \left(= \frac{7}{10} \right)$$
 A1 N2

(ii)
$$\frac{45}{70} \left(= \frac{9}{14} \right)$$
 A2 N2

- (c) valid reason in words or symbols $e. g. P(A \cap B) = 0$ if mutually exclusive, $P(A \cap B)$ if not mutually exclusive correct statement in words or symbols $e. g. P(A \cap B) = 0.3, P(A \cup B) \neq P(A) + P(B), P(A) + P(B) > 1$, some students play both sports, sets intersect
- (d) valid reason for independence $e.g. \ P(A \cap B) = P(A) \times P(B), \ P(B \mid A) = P(B)$ correct substitution $e.g. \ \frac{30}{100} \neq \frac{75}{100} \times \frac{55}{100}, \frac{30}{55} \neq \frac{75}{100}$ A1A1 N3

12. (a) (i)
$$P(B) = \frac{3}{4}$$
 A1 N1 (ii) $P(R) = \frac{1}{4}$ A1 N1

[12]

(b)
$$p = \frac{3}{4}$$

A1 N1

$$s = \frac{1}{4}, t = \frac{3}{4}$$

A1 N1

(c) (i)
$$P(X = 3)$$

= P (getting 1 and 2) =
$$\frac{1}{4} \times \frac{3}{4}$$

A1

$$=\frac{3}{16}$$

AG N0

(ii)
$$P(X=2) = \frac{1}{4} \times \frac{1}{4} + \frac{3}{4} \left(\text{or } 1 - \frac{3}{16} \right)$$

(A1)

$$=\frac{13}{16}$$

A1 N2

X	2	3
P(X=x)	<u>13</u>	3
	16	16

A2 N2

(ii) evidence of using
$$E(X) = \sum xP(X = x)$$

(M1)

$$E(X) = 2\left(\frac{13}{16}\right) + 3\left(\frac{3}{16}\right)$$

$$=\frac{35}{16}\left(=2\frac{3}{16}\right)$$

(e)
$$\sin \$10 \Rightarrow \text{scores 3 one time, 2 other time}$$
 (M1)

$$P(3) \times P(2) = \frac{13}{16} \times \frac{3}{16}$$
 (seen anywhere)

evidence of recognizing there are different ways of winning \$10 (M1)

e.g.
$$P(3) \times P(2) + P(2) \times P(3)$$
, $2\left(\frac{13}{16} \times \frac{3}{16}\right)$,

$$\frac{36}{256} + \frac{3}{256} + \frac{36}{256} + \frac{3}{256}$$

P(win \$10) =
$$\frac{78}{256} \left(= \frac{39}{128} \right)$$
 A1 N3

13. (a) (i) correct calculation (A1)

e.g.
$$\frac{9}{20} + \frac{5}{20} - \frac{2}{20}, \frac{4+2+3+3}{20}$$

P(male or tennis) =
$$\frac{12}{20} \left(= \frac{3}{5} \right)$$
 A1 N2

(ii) correct calculation (A1)

e.g.
$$\frac{6}{20} \div \frac{11}{20}, \frac{3+3}{11}$$

P(not football | female) =
$$\frac{6}{11}$$
 A1 N2

(b) P(first not football) = $\frac{11}{20}$, P(second not football) = $\frac{10}{19}$

P(neither football) =
$$\frac{11}{20} \times \frac{10}{19}$$
 A1

P(neither football) =
$$\frac{110}{380} \left(= \frac{11}{38} \right)$$
 A1 N1

14. (a) evidence of using
$$\sum p_i = 1$$
 (M1) correct substitution A1

e.g.
$$10k^2 + 3k + 0.6 = 1$$
, $10k^2 + 3k - 0.4 = 0$
 $k = 0.1$ A2 N2

(b) evidence of using
$$E(X) = \sum p_i x_i$$
 (M1)

[7]

[16]

$$e.g. - 1 \times 0.2 + 2 \times 0.4 + 3 \times 0.3$$

E(X) = 1.5

A1 N2

[7]

15. (a) evidence of binomial distribution (seen anywhere) (M1)

$$e.g. X \sim B\left(3, \frac{1}{4}\right)$$

mean =
$$\frac{3}{4}$$
 (= 0.75)

A1 N2

(b) $P(X=2) = {3 \choose 2} \left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)$ (A1)

$$P(X=2) = 0.141$$
 $\left(=\frac{9}{64}\right)$

A1 N2

(c) evidence of appropriate approach M1 e.g. complement, 1 - P(X = 0), adding probabilities

$$P(X=0) = (0.75)^3 \quad \left(=0.422, \frac{27}{64}\right)$$
 (A1)

$$P(X \ge 1) = 0.578 \qquad \left(=\frac{37}{64}\right)$$

A1 N2

16. (a) $P(A \cap B) = P(A) \times P(B) = 0.6x$

A1 N1

(b) (i) evidence of using $P(A \cup B) = P(A) + P(B) - P(A)P(B)$ (M1) correct substitution A1 e.g. 0.80 = 0.6 + x - 0.6x, 0.2 = 0.4x A1 N2

(ii) $P(A \cap B) = 0.3$ A1 N1

IB Questionbank Maths SL

11

[7]

(c) valid reason, with reference to
$$P(A \cap B)$$

 $e.g. P(A \cap B) \neq 0$

[6]

17. (a) (i) number of ways of getting
$$X = 6$$
 is 5

$$P(X = 6) = \frac{5}{36}$$

(ii) number of ways of getting
$$X > 6$$
 is 21

$$P(X > 6) = \frac{21}{36} \left(= \frac{7}{12} \right)$$

(iii)
$$P(X=7|X>5) = \frac{6}{26} \left(= \frac{3}{13} \right)$$

(b) evidence of substituting into
$$E(X)$$
 formula

finding
$$P(X < 6) = \frac{10}{36}$$
 (seen anywhere)

evidence of using
$$E(W) = 0$$

e.g.
$$3\left(\frac{5}{36}\right) + 1\left(\frac{21}{36}\right) - k\left(\frac{10}{36}\right) = 0$$
, $15 + 21 - 10k = 0$
 $k = \frac{36}{10}$ (= 3.6)

A1 N4

18. **METHOD 1**

(a)
$$\sigma = 10$$

$$1.12 \times 10 = 11.2$$
$$11.2 + 100$$

$$x = 111.2$$

N2

(b)
$$100 - 11.2$$

= 88.8

[6]

[13]

METHOD 2

(a)
$$\sigma = 10$$
 (A1)
Evidence of using standardisation formula (M1)

$$\frac{x-100}{10} = 1.12$$
 A1
 $x = 111.2$ A1 N2

(b)
$$\frac{100-x}{10} = 1.12$$
 A1 A1 N2 [6]

19. (a) For summing to 1 (M1)
$$e.g. \ \frac{1}{5} + \frac{2}{5} + \frac{1}{10} + x = 1$$

$$x = \frac{3}{10}$$
 A1 N2

(b) For evidence of using
$$E(X) = \sum x f(x)$$
 (M1)

Correct calculation A1

 $e.g. \ \frac{1}{5} \times 1 + 2 \times \frac{2}{5} + 3 \times \frac{1}{10} + 4 \times \frac{3}{10}$
 $E(X) = \frac{25}{10} (= 2.5)$ A1 N2

(c)
$$\frac{1}{10} \times \frac{1}{10}$$
 (M1) $\frac{1}{100}$ A1 N2

20. (a) Evidence of using the complement
$$e.g.\ 1-0.06$$
 (M1) $p=0.94$ A1 N2

(b) For evidence of using symmetry
$$(M1)$$
Distance from the mean is 7 $(A1)$
 $e.g.$ diagram, $D = \text{mean} - 7$
 $D = 10$
A1 N2

(c)
$$P(17 < H < 24) = 0.5 - 0.06$$
 (M1)
= 0.44 A1
 $E(trees) = 200 \times 0.44$ (M1)
= 88 A1 N2

21. (a) (i) Attempt to find
$$P(3H) = \left(\frac{1}{3}\right)^3$$
 (M1)
$$= \frac{1}{27}$$
 A1 N2

(ii) Attempt to find P(2H, 1T) (M1)
$$= 3\left(\frac{1}{3}\right)^{2} \frac{2}{3}$$

$$= \frac{2}{9}$$
A1 N2

(b) (i) Evidence of using
$$np \left(\frac{1}{3} \times 12\right)$$
 (M1) expected number of heads = 4 A1 N2

(ii) 4 heads, so 8 tails (A1)
$$E(winnings) = 4 \times 10 - 8 \times 6 (= 40 - 48)$$
 (M1) $= -\$ 8$ A1 N1

22. (a)
$$\frac{3}{4}$$
 A1 N1

(b)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 (M1)
 $P(A \cap B) = P(A) + P(B) - P(A \cup B)$
 $= \frac{2}{5} + \frac{3}{4} - \frac{7}{8}$ A1
 $= \frac{11}{40}$ (0.275) A1 N2

(c)
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \begin{pmatrix} \frac{11}{40} \\ \frac{3}{4} \end{pmatrix}$$
 A1

$$=\frac{11}{30} (0.367)$$

A1 N1

[6]

[6]

[6]

23. (a)
$$\frac{46}{97}$$
 (=0.474)

A1A1 N2

(b)
$$\frac{13}{51} (=0.255)$$

A1A1 N2

(c)
$$\frac{59}{97} = (-0.608)$$

A2 N2

24. (a)
$$\frac{19}{120}$$
 (=0.158)

A1 N1

(b)
$$35 - (8 + 5 + 7)(= 15)$$

(M1)

Probability =
$$\frac{15}{120} \left(= \frac{3}{24} = \frac{1}{8} = 0.125 \right)$$

A1 N2

(A1)

Number not studying = 120 - number studying = 44

(M1)

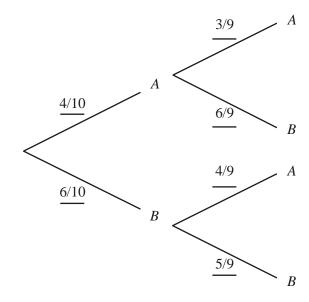
Probability =
$$\frac{44}{120} \left(= \frac{11}{30} = 0.367 \right)$$

A1 N3

IB Questionbank Maths SL

15

25. (a)



A1A1A1 N3

(b)
$$\left(\frac{4}{10} \times \frac{6}{9}\right) + \left(\frac{6}{10} \times \frac{4}{9}\right)$$

= $\frac{48}{90} \left(\frac{8}{15}, 0.533\right)$

M1M1

A1 N1

[6]

26. (a) For summing to 1 (M1)
$$eg\ 0.1 + a + 0.3 + b = 1$$
 $a + b = 0.6$ A1

(b) evidence of correctly using

(M1)

$$eg\ 0 \times 0.1 + 1 \times a + 2 \times 0.3 + 3$$

 $\times b, 0.1 + a + 0.6 + 3b =$
 1.5

Correct equation 0 + a + 0.6 + 3b = 1.5 (a + 3b = 0.9)

Solving simultaneously gives

$$a = 0.45$$
 $b = 0.15$ A1A1

[6]

6

(2) (Total 6 marks)

27. (a) Independent
$$\Rightarrow$$
 P($A \cap B$) = P(A) × P(B) (= 0.3 × 0.8) (M1)
= 0.24 A1 N2

(b)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 (= 0.3 + 0.8 - 0.24) M1
= 0.86 A1 N1

(c) No, with valid reason A2 N2
$$eg\ P(A\cap B) \neq 0\ \text{or}\ P(A\cup B) \neq P(A) + P(B)\ \text{or correct}$$
 numerical equivalent

[6]

28. (a) For using
$$\sum p=1$$
 (0.4 + p + 0.2 + 0.07 + 0.02 = 1) (M1)

$$p = 0.31$$
 A1 N2

(b) For using
$$E(X) = \sum xP(X=x)$$
 (M1)

$$E(X) = 1(0.4) + 2(0.31) + 3(0.2) + 4(0.07) + 5(0.02)$$
 A1
= 2 A2 N2

[6]

[6]

29. (a)
$$P(P \mid C) = \frac{20}{20+40}$$
 A1

$$=\frac{1}{3}$$
 A1 N1

(b)
$$P(P \mid C') = \frac{30}{30+60}$$
 A1

$$=\frac{1}{3}$$
 A1 N1

P is independent of C, with valid reason A1 N2

P is independent of C, with valid reason A1 N2
$$eg P(P \mid C) = P(P \mid C'), P(P \mid C) = P(P),$$

$$\frac{20}{150} = \frac{50}{150} \times \frac{60}{150} (ie P(P \cap C) = P(P) \times P(C))$$

30. Adding probabilities (M1)(a) Evidence of knowing that sum = 1 for probability distribution **R**1 eg Sum greater than 1, sum = 1.3, sum does not equal 1 N2

(b) Equating sum to 1
$$(3k + 0.7 = 1)$$
 M1 $k = 0.1$ A1 N1

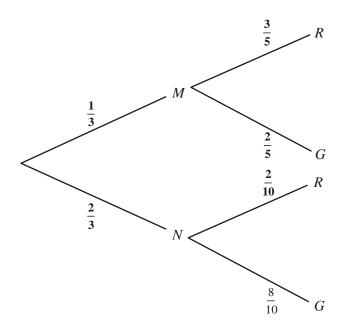
(c) (i)
$$P(X=0) = \frac{0+1}{20}$$
 (M1)
$$= \frac{1}{20}$$
 A1 N2

(ii) Evidence of using
$$P(X > 0) = 1 - P(X = 0)$$

$$\left(\text{or } \frac{4}{20} + \frac{5}{20} + \frac{10}{20} \right)$$
(M1)

$$=\frac{19}{20}$$
 A1 N2

31. (a)



A1A1A1 N3

[8]

(b) (i)
$$P(M \text{ and } G) = \frac{1}{3} \times \frac{2}{5} (= \frac{2}{15} = 0.133)$$
 A1 N1

(ii)
$$P(G) = \frac{1}{3} \times \frac{2}{5} + \frac{2}{3} \times \frac{8}{10}$$
 (A1)(A1)
= $\frac{10}{15} \left(= \frac{2}{3} = 0.667 \right)$ A1 N3

(iii)
$$P(M \mid G) = \frac{P(M \cap G)}{P(G)} = \frac{\frac{2}{15}}{\frac{2}{3}}$$
 (A1)(A1)

$$=\frac{1}{5}$$
 or 0.2 A1 N3

(c)
$$P(R) = 1 - \frac{2}{3} = \frac{1}{3}$$
 (A1)

Evidence of using a correct formula M1

E(win) =
$$2 \times \frac{1}{3} + 5 \times \frac{2}{3} \left(\text{or } 2 \times \frac{1}{3} \times \frac{3}{5} + 2 \times \frac{2}{3} \times \frac{2}{10} + 5 \times \frac{1}{3} \times \frac{2}{5} + 5 \times \frac{2}{3} \times \frac{8}{10} \right)$$
 A1

= \$4
$$\left(\text{accept } \frac{12}{3}, \frac{60}{15}\right)$$
 A1 N2

[14]

32. (a) For attempting to use the formula
$$(P(E \cap F) = P(E)P(F))$$
 (M1)

Correct substitution or rearranging the formula A1

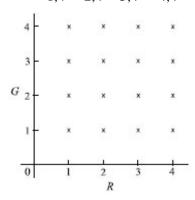
$$eg \frac{1}{3} = \frac{2}{3} P(F), P(F) = \frac{P(E \cap F)}{P(E)}, P(F) = \frac{\frac{1}{3}}{\frac{2}{3}}$$

$$P(F) = \frac{1}{2}$$
 A1 N2

- (b) For attempting to use the formula $(P(E \cup F) = P(E) + P(F) (P(E \cap F))$ (M1)
 - $P(E \cup F) = \frac{2}{3} + \frac{1}{2} \frac{1}{3}$ A1
 - $=\frac{5}{6}(=0.833)$ A1 N2

[6]

- 33. (a) (i) Attempt to set up sample space, (M1)
 Any correct representation with 16 pairs A2 N3
 - eg 1,1 2,1 3,1 4,1
 - 1,2 2,2 3,2 4,2
 - 1,3 2,3 3,3 4,3
 - 1,4 2,4 3,4 4,4



(ii) Probability of two 4s is $\frac{1}{16}$ (= 0.0625)

A1 N1

(b)

x	0	1	2
P(X = x)	9	6	1
	16	16	16

A1A1A1 N3

(c) Evidence of selecting appropriate formula for
$$E(X)$$
 (M1)

$$eg E(X) = \sum_{0}^{2} x P(X = x), E(X) = np$$

Correct substitution

$$eg \ E(X) = 0 \times \frac{9}{16} + 1 \times \frac{6}{16} + 2 \times \frac{1}{16}, E(X) = 2 \times \frac{1}{4}$$

$$E(X) = \frac{8}{16} \left(= \frac{1}{2} \right)$$
A1 N2

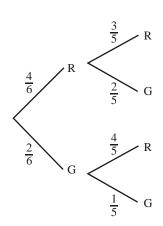
[10]

34. (a) Using
$$E(X) = \sum_{0}^{2} x P(X = x)$$
 (M1)

Substituting correctly
$$E(X) = 0 \times \frac{3}{10} + 1 \times \frac{6}{10} + 2 \times \frac{1}{10}$$
 A1

$$=\frac{8}{10}$$
 (0.8) A1 3

(b) (i)



A1A1A1

3

Note: Award (A1) for each complementary pair of probabilities, ie $\frac{4}{6}$ and $\frac{2}{6}$, $\frac{3}{5}$ and $\frac{2}{5}$, $\frac{4}{5}$ and $\frac{1}{5}$.

(ii)
$$P(Y=0) = \frac{2}{5} \times \frac{1}{5} = \frac{2}{30}$$
 A1

$$P(Y=1) = P(RG) + P(GR) = \left(= \frac{4}{6} \times \frac{2}{5} + \frac{2}{6} \times \frac{4}{5} \right)$$
 M1

$$=\frac{16}{30}$$
 A1

$$P(Y=2) = \frac{4}{6} \times \frac{3}{5} = \frac{12}{30}$$
 (A1)

For forming a distribution M1 5

у	0	1	2
P(Y=y)	$\frac{2}{30}$	$\frac{16}{30}$	$\frac{12}{30}$

(c)
$$P(\text{Bag A}) = \frac{2}{6} \left(= \frac{1}{3} \right)$$
 (A1)

$$P(\text{BagA B}) = \frac{4}{6} \left(= \frac{2}{3} \right) \tag{A1}$$

For summing
$$P(A \cap RR)$$
 and $P(B \cap RR)$ (M1)

Substituting correctly
$$P(RR) = \frac{1}{3} \times \frac{1}{10} + \frac{2}{3} \times \frac{12}{30}$$
 A1

$$= \frac{27}{90} \left(\frac{3}{10}, 0.3 \right)$$
 A1 5

(d) For recognising that
$$P(1 \text{ or } 6|RR) = P(A|RR) = \frac{P(A \cap RR)}{P(RR)}$$
 (M1)

$$= \frac{1}{30} \div \frac{27}{90}$$
 A1

$$= \frac{3}{27} \left(\frac{1}{9}, 0.111 \right)$$
 A1 3

35. Total number of possible outcomes = 36 (may be seen anywhere) (A1)

(a)
$$P(E) = P(1,1) + P(2,2) + P(3,3) + P(4,4) + P(5,5) + P(6,6)$$

= $\frac{6}{26}$ (A1) (C2)

(b)
$$P(F) = P(6, 4) + P(5, 5) + P(4, 6)$$

= $\frac{3}{26}$ (A1) (C1)

[19]

(c)
$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

$$P(E \cap F) = \frac{1}{36} \tag{A1}$$

$$P(E \cup F) = \frac{6}{36} + \frac{3}{36} - \frac{1}{36} \left(= \frac{8}{36} = \frac{2}{9}, 0.222 \right)$$
 (M1)(A1) (C3)

[6]

36. (a) (i)
$$P(A) = \frac{80}{210} = \left(\frac{8}{21} = 0.381\right)$$
 (A1) (N1)

(ii)
$$P(\text{year 2 art}) = \frac{35}{210} = \left(\frac{1}{6} = 0.167\right)$$
 (A1) (N1)

(iii) No (the events are not independent, or, they are dependent) (A1) (N1)

EITHER

$$P(A \cap B) = P(A) \times P(B)$$
 (to be independent) (M1)

$$P(B) = \frac{100}{210} \left(= \frac{10}{21} = 0.476 \right) \tag{A1}$$

$$\frac{1}{6} \neq \frac{8}{21} \times \frac{10}{21} \tag{A1}$$

OR

$$P(A)=P(A|B)$$
 (to be independent) (M1)

$$P(A|B) = \frac{35}{100} \tag{A1}$$

$$\frac{8}{21} \neq \frac{35}{100} \tag{A1}$$

OR

$$P(B)=P(B|A)$$
 (to be independent) (M1)

$$P(B) = \frac{100}{210} \left(= \frac{10}{21} = 0.476 \right), P(B|A) = \frac{35}{80}$$
(A1)

$$\frac{35}{80} \neq \frac{100}{210} \tag{A1}$$

Note: Award the first (M1) only for a **mathematical** interpretation of independence.

(b)
$$n(\text{history}) = 85$$
 (A1)
 $P(\text{year 1} | \text{history}) = \frac{50}{85} = \left(\frac{10}{17} = 0.588\right)$ (A1)(N2) 2

(c)
$$\left(\frac{110}{210} \times \frac{100}{209}\right) + \left(\frac{100}{210} \times \frac{110}{209}\right) \left(= 2 \times \frac{110}{210} \times \frac{100}{209}\right)$$
 (M1)(A1)(A1)
 $= \frac{200}{399} (= 0.501)$ (N2) 4

37. Correct probabilities
$$\left(\frac{13}{24}\right)$$
, $\left(\frac{12}{23}\right)$, $\left(\frac{11}{22}\right)$, $\left(\frac{10}{21}\right)$ (A1)(A1)(A1)(A1)

Multiplying
$$\left(\frac{13}{24} \times \frac{12}{23} \times \frac{11}{22} \times \frac{10}{21}\right)$$
 (M1)

$$P(4 \text{ girls}) = \frac{17160}{255024} \left(= \frac{65}{966} = 0.0673 \right)$$
 (A1) (C6)

[6]

38. For using
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Let $P(A) = x$ then $P(B) = 3x$ (M1)

 $P(A \cap B) = P(A) \times 3P(A) (= 3x^2)$ (A1)

$$0.68 = x + 3x - 3x^2 \tag{A1}$$

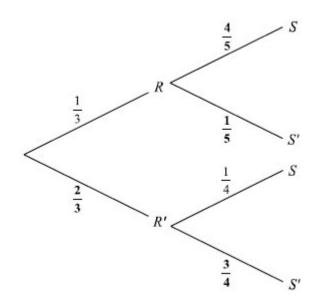
 $3x^2 - 4x + 0.68 = 0$

$$x = 0.2$$
 (x = 1.133, not possible) (A2)

$$P(B) = 3x = 0.6$$
 (A1) (C6)

[6]

39. (a)



(A1)(A1)(A1)

(b) (i)
$$P(R \cap S) = \frac{1}{3} \times \frac{4}{5} \left(= \frac{4}{15} = 0.267 \right)$$
 (A1) (N1)

(ii)
$$P(S) = \frac{1}{3} \times \frac{4}{5} + \frac{2}{3} \times \frac{1}{4}$$
 (A1)(A1)

$$= \frac{13}{30} (= 0.433) \tag{A1)}$$

(iii)
$$P(R \mid S) = \frac{\frac{4}{15}}{\frac{13}{30}}$$
 (A1)(A1)

$$= \frac{8}{13} (= 0.615) \tag{A1}$$

[10]

40. (a)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 (M1)

$$P(A \cap B) = \frac{1}{2} + \frac{3}{4} - \frac{7}{8}$$

$$= \frac{3}{8}$$
(A1) (C2)

(b)
$$P(A|B) = \frac{P(A \cap B)}{P(B)} \left(= \frac{\frac{3}{8}}{\frac{3}{4}} \right)$$
 (M1)
$$= \frac{1}{2}$$
 (A1) (C2)

(c) Yes, the events are independent (A1) (C1)

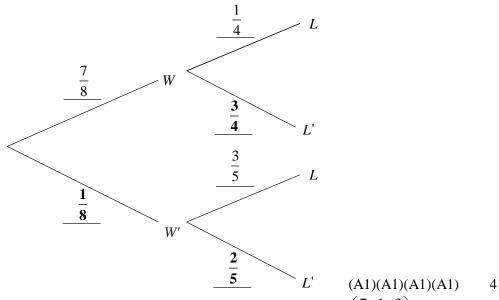
EITHER

$$P(A \mid B) = P(A) \tag{R1}$$

OR

$$P(A \cap B) = P(A)P(B)$$
 (R1) (C1)

41. (a)



Note: Award (A1) for the given probabilities $\left(\frac{7}{8}, \frac{1}{4}, \frac{3}{5}\right)$ in the correct positions, and (A1) for each **bold** value.

(b) Probability that Dumisani will be late is
$$\frac{7}{8} \times \frac{1}{4} + \frac{1}{8} \times \frac{3}{5}$$
 (A1)(A1)

$$= \frac{47}{160} (0.294)$$
(A1) (N2) 3

(c)
$$P(W|L) = \frac{P(W \cap L)}{P(L)}$$

$$P(W \cap L) = \frac{7}{8} \times \frac{1}{4} \tag{A1}$$

$$P(L) = \frac{47}{160} \tag{A1}$$

$$P(W|L) = \frac{\frac{7}{32}}{\frac{47}{160}}$$
 (M1)

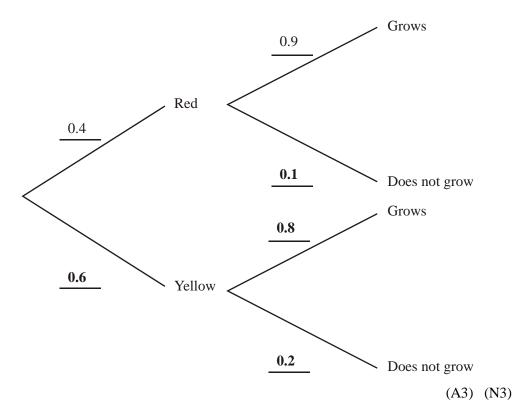
$$= \frac{35}{47} (= 0.745) \tag{A1)} \tag{N3} 4$$

42. (a)
$$\frac{120}{360} \left(= \frac{1}{3} = 0.333 \right)$$
 (A1)(A1) (C2)

(b)
$$\frac{90+120}{360} \left(= \frac{210}{360} = \frac{7}{12} = 0.583 \right)$$
 (A2) (C2)

(c)
$$\frac{90}{210} \left(= \frac{3}{7} = 0.429 \right)$$
 $\left(\text{Accept } \frac{\frac{1}{4}}{\frac{7}{12}} \right)$ (A1)(A1) (C2)

43. (a)



(b) (i)
$$0.4 \times 0.9$$
 (A1)

$$= 0.36(A1)$$
 (N2)

3

[10]

(ii)
$$0.36 + 0.6 \times 0.8 \quad (=0.36 + 0.48)$$
 (A1)

$$= 0.84(A1)$$
 (N1)

(iii)
$$\frac{P(\text{red} \cap \text{grows})}{P(\text{grows})}$$
 (may be implied) (M1)

$$=\frac{0.36}{0.84} \tag{A1}$$

$$=0.429\left(\frac{3}{7}\right) \tag{N2}$$

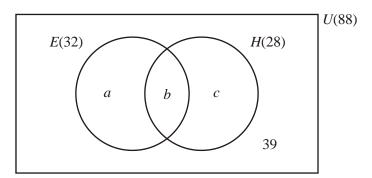
Note: Award part marks if the candidate shows understanding of I and/or M

$$eg \quad I \quad P(A \cap B) = P(A)P(B)$$
 (M1)

$$M P(A \cup B) = P(A) + P(B)$$
 (M1)

[6]

45. (a)



$$n(E \cup H) = a + b + c = 88 - 39 = 49$$
 (M1)

$$n(E \cup H) = 32 + 28 - b = 49$$

$$60 - 49 = b = 11 \tag{A1}$$

$$a = 32 - 11 = 21 \tag{A1}$$

$$c = 28 - 11 = 17 \tag{A1}$$

Note: Award (A3) for correct answers with no working.

(b) (i)
$$P(E \cap H) = \frac{11}{88} = \frac{1}{8}$$
 (A1)

(ii)
$$P(H'|E) = \frac{P(H' \cap E)}{P(E)} = \frac{\frac{21}{88}}{\frac{32}{88}}$$
 (M1)

$$=\frac{21}{32} \ (=0.656) \tag{A1}$$

OR

Required probability =
$$\frac{21}{32}$$
 (A1)(A1) 3

(c) (i) P(none in economics) =
$$\frac{56 \times 55 \times 54}{88 \times 87 \times 86}$$
 (M1)(A1)
= 0.253 (A1)

Notes: Award (M0)(A0)(A1)(ft)
$$for\left(\frac{56}{88}\right)^3 = 0.258$$
.

Award no marks for $\frac{56 \times 55 \times 54}{88 \times 88 \times 88}$

(ii)
$$P(\text{at least one}) = 1 - 0.253$$
 (M1)

$$=0.747$$
 (A1)

OR

$$3\left(\frac{32}{88} \times \frac{56}{87} \times \frac{55}{86}\right) + 3\left(\frac{32}{88} \times \frac{31}{87} \times \frac{56}{86}\right) + \frac{32}{88} \times \frac{31}{87} \times \frac{30}{86}$$
 (M1)

= 0.747 (A1) 5

46.
$$P(RR) = \frac{7}{12} \times \frac{6}{11} \left(= \frac{7}{22} \right)$$
 (M1)(A1)

$$P(YY) = \frac{5}{12} \times \frac{4}{11} \left(= \frac{5}{33} \right)$$
 (M1)(A1)

$$P (same colour) = P(RR) + P(YY)$$
(M1)

$$= \frac{31}{66} (= 0.470, 3 \text{ sf}) \tag{A1}$$

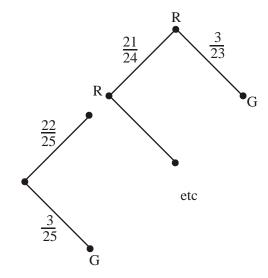
Note: Award C2 for
$$\left(\frac{7}{12}\right)^2 + \left(\frac{5}{12}\right)^2 = \frac{74}{144}$$
.

[6]

[12]

47. (a)
$$P = \frac{22}{23}$$
 (= 0.957 (3 sf)) (A2)

(b)



(M1)

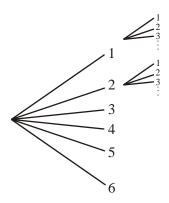
$$P = P(RRG) + P(RGR) + P(GRR)$$
(M1)

$$\frac{22}{25} \times \frac{21}{24} \times \frac{3}{23} + \frac{22}{25} \times \frac{3}{24} \times \frac{21}{23} + \frac{3}{25} \times \frac{22}{24} \times \frac{21}{23}$$

$$= \frac{693}{2300} (= 0.301 (3 \text{ sf}))$$
(A1) (C4)

[6]

48. Sample space ={(1, 1), (1, 2) ... (6, 5), (6, 6)} (This may be indicated in other ways, for example, a grid or a tree diagram, partly or fully completed)



(a)
$$P(S < 8) = \frac{6+5+4+3+2+1}{36}$$
 (M1)

$$=\frac{7}{12}\tag{A1}$$

OR

$$P(S < 8) = \frac{7}{12} \tag{A2}$$

(b) P (at least one 3) =
$$\frac{1+1+6+1+1+1}{36}$$
 (M1)

$$=\frac{11}{36}\tag{A1}$$

OR

$$P (at least one 3) = \frac{11}{36}$$
 (A2)

(c) P (at least one 3 | S < 8) =
$$\frac{P(\text{at least one } 3 \cap S < 8)}{P(S < 8)}$$
 (M1)

$$=\frac{\frac{7}{36}}{\frac{7}{12}}\tag{A1}$$

$$=\frac{1}{3}\tag{A1}$$

[7]

49. (a)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow P(A \cap B) = P(A) + P(B) - P(A \cup B)$$
 (M1)

$$= \frac{3}{11} + \frac{4}{11} - \frac{6}{11} \tag{M1}$$

$$=\frac{1}{11} (0.0909) \tag{A1}$$

(b) For independent events,
$$P(A \cap B) = P(A) \times P(B)$$
 (M1)

$$=\frac{3}{11}\times\frac{4}{11}\tag{A1}$$

$$=\frac{12}{121} (0.0992) \tag{A1}$$

[6]

50.
$$P(\text{different colours}) = 1 - [P(GG) + P(RR) + P(WW)]$$
 (M1)

$$=1-\left(\frac{10}{6}\times\frac{9}{25}+\frac{10}{26}\times\frac{9}{25}+\frac{6}{26}\times\frac{5}{25}\right) \tag{A1}$$

$$=1 - \left(\frac{210}{650}\right) \tag{A1}$$

$$= \frac{44}{65} (= 0.677, \text{ to 3 sf}) \tag{A1}$$

OR

$$P(different colours) = P(GR) + P(RG) + P(GW) + P(WG) + P(RW) + P(WR)$$
(A1)

$$= 4\left(\frac{10}{26} \times \frac{6}{25}\right) + 2\left(\frac{10}{26} \times \frac{10}{25}\right) \tag{A1)(A1)}$$

$$= \frac{44}{65} (= 0.677, \text{ to 3 sf}) \tag{A1}$$

[4]

51. (a)
$$s = 7.41(3 \text{ sf})$$
 (G3) 3

(b)

Weight (W)	$W \le 85$	$W \leq 90$	$W \leq 95$	<i>W</i> ≤ 100	<i>W</i> ≤ 105	<i>W</i> ≤ 110	<i>W</i> ≤ 115
Number of packets	5	15	30	56	69	76	80

(A1) 1

(d) Sum = 0, since the sum of the deviations from the mean is zero. (A2)
$$\mathbf{OR}$$

$$\sum (W_i - \overline{W}) = \sum W_i - \left(80 \frac{\sum W_i}{80}\right) = 0 \tag{M1)(A1)}$$

(e) Let A be the event: W > 100, and B the event: $85 < W \le 110$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
(M1)

$$P(A \cap B) = \frac{20}{80} \tag{A1}$$

$$P(B) = \frac{71}{80} \tag{A1}$$

$$P(A \mid B) = 0.282 \tag{A1}$$

OR

71 packets with weight
$$85 < W \le 110$$
. (M1)

Of these, 20 packets have weight
$$W > 100$$
. (M1)

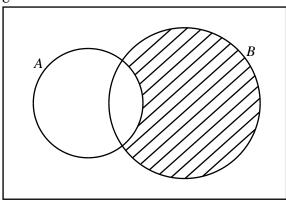
Required probability =
$$\frac{20}{71}$$
 (A1)

$$= 0.282$$
 (A1)

Notes: Award (A2) for a correct final answer with no reasoning.

Award up to (M2) for correct reasoning or method.

[14]



(A1) (C1)

(b)
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

65 - 30 + 50 $n(A \cap B)$

$$65 = 30 + 50 - n(A \cap B)$$

$$\Rightarrow n(A \cap B) = 15$$
 (may be on the diagram) (M1)

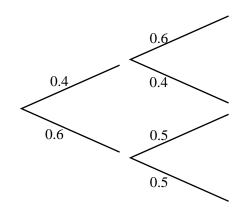
$$n(B \cap A') = 50 - 15 = 35$$
 (A1) (C2)

(c)
$$P(B \cap A') = \frac{n(B \cap A')}{n(U)} = \frac{35}{100} = 0.35$$
 (A1) (C1)

[4]

[4]

53. (a)



(A1) (C1)

(b)
$$P(B) = 0.4(0.6) + 0.6 (0.5) = 0.24 + 0.30$$
 (M1)
= 0.54 (A1) (C2)

(c)
$$P(C|B) = \frac{P(B \cap C)}{P(B)} = \frac{0.24}{0.54} = \frac{4}{9} = 0.444, 3 \text{ sf}$$
 (A1) (C1)

54. (a)

	Males	Females	Totals
Unemployed	20	40	60
Employed	90	50	140
Totals	110	90	200

Note: Award (A1) if at least 4 entries are correct. Award (A2) if all 8 entries are correct.

(b) (i)
$$P(\text{unemployed female}) = \frac{40}{200} = \frac{1}{5}$$
 (A1)

(ii)
$$P(\text{male I employed person}) = \frac{90}{140} = \frac{9}{14}$$
 (A1)

55. (a)

Boy Girl Total

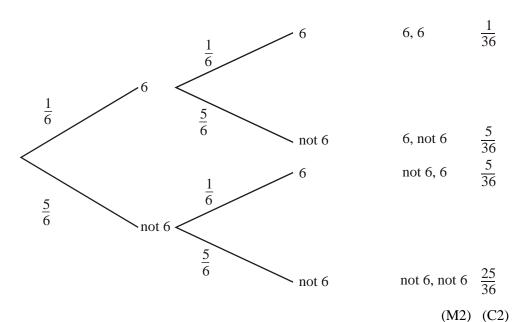
TV	13	25	38
Sport	33	29	62
Total	46	54	100

$$P(TV) = \frac{38}{100}$$
 (A1) (C2)

(b)
$$P(TV \mid Boy) = \frac{13}{46} = 0.283 \text{ to } 3 \text{ sf}$$
 (A2) (C2)

Notes: Award (A1) for numerator and (A1) for denominator. Accept equivalent answers.

[4]



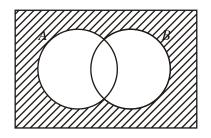
Notes: Award (M1) for probabilities $\frac{1}{6}, \frac{5}{6}$ correctly entered on diagram.

Award (M1) for correctly listing the outcomes 6, 6; 6 not 6; not 6, 6; not 6, not 6, or the corresponding probabilities.

(b) P(one or more sixes) =
$$\frac{1}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{5}{6} + \frac{5}{6} \times \frac{1}{6}$$
 or $\left(1 - \frac{5}{6} \times \frac{5}{6}\right)$ (M1)
= $\frac{11}{36}$ (A1) (C2)

[4]

57. (a)



(A1) (C1)

(b) (i)
$$n(A \cap B) = 2$$
 (A1) (C1)

(ii)
$$P(A \cap B) = \frac{2}{36} \left(\text{or} \frac{1}{18} \right) \text{ (allow ft from (b)(i))}$$
 (A1) (C1)

(c)
$$n(A \cap B) \neq 0$$
 (or equivalent) (R1) (C1)

58.
$$p(\text{Red}) = \frac{35}{40} = \frac{7}{8}$$
 $p(\text{Black}) = \frac{5}{40} = \frac{1}{8}$

58.
$$p(\text{Red}) = \frac{35}{40} = \frac{7}{8}$$
 $p(\text{Black}) = \frac{5}{40} = \frac{1}{8}$
(a) (i) $p(\text{one black}) = \binom{8}{1} \left(\frac{1}{8}\right)^1 \left(\frac{7}{8}\right)^7$ (M1)(A1) $= 0.393 \text{ to } 3 \text{ sf}$ (A1) 3

(ii)
$$p(\text{at least one black}) = 1 - p(\text{none})$$
 (M1)

$$=1 - \binom{8}{0} \left(\frac{1}{8}\right)^0 \left(\frac{7}{8}\right)^8 \tag{A1}$$

$$= 1 - 0.344$$

= 0.656 (A1) 3

(b) 400 draws: expected number of blacks =
$$\frac{400}{8}$$
 (M1) = 50 (A1) 2

59. (a)
$$p(A \cap B) = 0.6 + 0.8 - 1$$
 (M1)
= 0.4 (A1) (C2)

(b)
$$p(CA \cup CB) = p(C(A \cap B)) = 1 - 0.4$$
 (M1)
= 0.6 (A1) (C2)