1. (a) $\sigma=3$
evidence of attempt to find $\mathrm{P}(X \leq 24.5)$
e.g. $z=1.5, \frac{24.5-20}{3}$
$\mathrm{P}(X \leq 24.5)=0.933$
A1 N3
(b) (i)

A1A1 N2
Note: Award Al with shading that clearly extends to right of the
mean, Al for any correct label, either k, area or their value of k
(ii) $z=1.03(64338)$
attempt to set up an equation
e.g. $\frac{k-20}{3}=1.0364, \frac{k-20}{3}=0.85$

$$
k=23.1
$$

(A1)

A1 N3 5
[8]
2. (a) correct substitution into formula for $\mathrm{E}(X)$
e.g. 0.05×240

$$
\mathrm{E}(X)=12
$$

$$
\begin{array}{lll}
\mathrm{A} 1 & \mathrm{~N} 2 & 2
\end{array}
$$

(b) evidence of recognizing binomial probability (may be seen in part (a)) (M1)
e.g. $\binom{240}{15}(0.05)^{15}(0.95)^{225}, X \sim \mathrm{~B}(240,0.05)$
$\mathrm{P}(X=15)=0.0733$
A1 N2
2
(c) $\mathrm{P}(X \leq 9)=0.236$
evidence of valid approach
e.g. using complement, summing probabilities
$\mathrm{P}(X \geq 10)=0.764$
A1 N3 3
[7]
3. (a) symmetry of normal curve
e.g. $\mathrm{P}(X<25)=0.5$
$\mathrm{P}(X>27)=0.2$
A1 N2 2
(b) METHOD 1
finding standardized value
e.g. $\frac{27-25}{\sigma}$
evidence of complement
e.g. $1-p, \mathrm{P}(X<27), 0.8$
finding z-score
e.g. $z=0.84 \ldots$
attempt to set up equation involving the standardized value
e.g. $0.84=\frac{27-25}{\sigma}, 0.84=\frac{X-\mu}{\sigma}$
$\sigma=2.38$
A1 N3 5

METHOD 2

set up using normal CDF function and probability
e.g. $\mathrm{P}(25<X<27)=0.3, \mathrm{P}(X<27)=0.8$
correct equation
e.g. $\mathrm{P}(25<X<27)=0.3, \mathrm{P}(X>27)=0.2$
attempt to solve the equation using GDC
e.g. solver, graph, trial and error (more than two trials must be shown)
$\sigma=2.38$
A1 N3 5
4. (a) evidence of recognizing binomial probability (may be seen in (b) or (c))
(M1)
e.g. probability $=\binom{7}{4}(0.9)^{4}(0.1)^{3}, X \sim \mathrm{~B}(7,0.9)$, complementary
probabilities
probability $=0.0230 \quad$ A1 N2
(b) correct expression
e.g. $\binom{7}{4} p^{4}(1-p)^{3}, 35 p^{4}(1-p)^{3}$

Note: Award Al for binomial coefficient $\left(\operatorname{accept}\binom{7}{3}\right)$, Al for $p^{4}(1-p)^{3}$.
(c) evidence of attempting to solve their equation (M1)
e.g. $\binom{7}{4} p^{4}(1-p)^{3}=0.15$, sketch
$p=0.356,0.770 \quad$ A1A1 N3
[7]
5. (a) evidence of appropriate approach
e.g. $1-0.85$, diagram showing values in a normal curve $\mathrm{P}(w \geq 82)=0.15$

A1 N 2
(b) (i) $z=-1.64$
(ii) evidence of appropriate approach
e.g. $-1.64=\frac{x-\mu}{\sigma}, \frac{68-76.6}{\sigma}$
correct substitution
A1
e.g. $-1.64=\frac{68-76.6}{\sigma}$
$\sigma=5.23$
(M1)
A1 N1

A1 N1
(c) (i) $\quad 68.8 \leq$ weight ≤ 84.4

A1A1A1 N3
Note: Award A1 for 68.8, A1 for 84.4, A1 for giving answer as an interval.
(ii) evidence of appropriate approach
(M1)
e.g. $\mathrm{P}(-1.5 \leq z \leq 1.5), \mathrm{P}(68.76<y<84.44)$

P (qualify) $=0.866$
A1 N2
(d) recognizing conditional probability
e.g. $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
$\mathrm{P}($ woman and qualify $)=0.25 \times 0.7$
$\mathrm{P}($ woman \mid qualify $)=\frac{0.25 \times 0.7}{0.866}$
$\mathrm{P}($ woman \mid qualify $)=0.202$
6. (a) evidence of attempt to find $\mathrm{P}(X \leq 475)$
e.g. $\mathrm{P}(Z \leq 1.25)$
$\mathrm{P}(X \leq 475)=0.894$
(b) evidence of using the complement
e.g. $0.73,1-p$
$z=0.6128$
(A1)
setting up equation (M1)
e.g. $\frac{a-450}{20}=0.6128$
$a=462$
A1 N3
[6]
7. (a) evidence of using mid-interval values (5, 15, 25, $35,50,67.5,87.5$)
(b) (i) $Q_{1}=15, Q_{3}=40$
(A1)(A1)
$I Q R=25$ (accept any notation that suggests the interval 15 to 40)
A1 N3
(ii) METHOD 1
60% have a length less than k
$0.6 \times 200=120$
(A1)
k30(cm)
A1
N2

METHOD 2

$$
\begin{array}{lr}
0.4 \times 200=80 & \text { (A1) } \tag{A1}\\
200-80=120 & \text { (A1) } \\
k=30(\mathrm{~cm}) & \mathrm{A} 1 \\
\mathrm{~N} 2
\end{array}
$$

(c) $l<20 \mathrm{~cm} \Rightarrow 70$ fish
$\mathrm{P}($ small $)=\frac{70}{200}(=0.35)$
(d)

Cost $\$ \boldsymbol{X}$	4	10	12
$\mathrm{P}(X=x)$	$\mathbf{0 . 3 5}$	0.565	$\mathbf{0 . 0 8 5}$

(e) correct substitution (of their p values) into formula for $\mathrm{E}(X)$
e.g. $4 \times 0.35+10 \times 0.565+12 \times 0.085$
$\mathrm{E}(X)=8.07$ (accept \$8.07)
A1 N2
8. (a) $\mathrm{E}(X)=2$
(b) evidence of appropriate approach involving binomial
e.g. $\binom{10}{3}(0.2)^{3},(0.2)^{3}(0.8)^{7}, X \sim \mathrm{~B}(10,0.2)$
$\mathrm{P}(X=3)=0.201$
A1 N1
(c) METHOD 1
$\mathrm{P}(X \leq 3)=0.10737+0.26844+0.30199+0.20133$ ($=0.87912 \ldots$... $)$
evidence of using the complement (seen anywhere)
e.g. $1-$ any probability, $\mathrm{P}(X>3)=1-\mathrm{P}(X \leq 3)$
$\mathrm{P}(X>3)=0.121$
A1 N2

METHOD 2

recognizing that $\mathrm{P}(X>3)=\mathrm{P}(X \geq 4)$
e.g. summing probabilities from $X=4$ to $X=10$
correct expression or values
e.g. $\sum_{r=4}^{10}\binom{10}{r}(0.2)^{10-r}(0.8)^{r}$
$0.08808+0.02642+0.005505+0.000786+0.0000737+0.000004+0.0000001$
$\mathrm{P}(X>3)=0.121$
A1 N2
9. $\quad X \sim \mathrm{~N}\left(7,0.5^{2}\right)$
(a) (i) $z=2$
$\mathrm{P}(X<8)=\mathrm{P}(Z<2)=0.977$
(ii) evidence of appropriate approach e.g. symmetry, $z=-2$ $\mathrm{P}(6<X<8)=0.954$ (tables 0.955)

Note: Award M1A1(AP) if candidates refer to 2 standard deviations from the mean, leading to 0.95 .
(b) (i)

A1A1 N2
Note: Award A1 ford to the left of the mean, A1 for area to the left of d shaded.
(ii) $z=-1.645$

$$
\begin{align*}
\frac{d-7}{0.5} & =-1.645 \tag{M1}\\
d & =6.18
\end{align*}
$$

A1 N3
(c) $\quad Y \sim \mathrm{~N}\left(\mu, 0.5^{2}\right)$

$$
\begin{array}{lr}
\mathrm{P}(Y<5)=0.2 \\
z=-0.84162 \ldots & \text { (M1) } \\
\frac{5-\mu}{0.5}=-0.8416 \\
& \text { A1 } \tag{M1}\\
\quad=5.42 & \text { (M1) } \\
\end{array}
$$

10. (a)

A1A1 N2
Notes: Award Al for three re.g.ions, (may be shown by lines or shading) Al for clear labelling of two re.g.ions (may be shown by percentages or cate.g.ories).
r and t need not be labelled, but if they are, they may be interchanged.
(b) METHOD 1
$\mathrm{P}(X<r)=0.1292$
$r=6.56$
$1-0.1038(=0.8962)$ (may be seen later)
$\mathrm{P}(X<t)=0.8962$
$t=7.16$
(A1)
A1 N2
A1
(A1)
A1 N2

A1A1

A1A1 N2N2
11. $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$
$\mathrm{P}(X>90)=0.15$ and $\mathrm{P}(X<40)=0.12$
(M1)
Finding standardized values $1.036,-1.175$
Setting up the equations $1.036=\frac{90-\mu}{\sigma},-1.175=\frac{40-\mu}{\sigma}$
$\mu=66.6, \sigma=22.6$
A1A1 N2N2
12. (a) evidence of valid approach involving A and B
e.g. $\mathrm{P}(A \cap$ pass $)+\mathrm{P}(B \cap$ pass $)$, tree diagram
correct expression
e.g. $\mathrm{P}($ pass $)=0.6 \times 0.8+0.4 \times 0.9$
$\mathrm{P}($ pass $)=0.84$
A1 N2 3
(b) evidence of recognizing complement (seen anywhere)
e.g. $\mathrm{P}(B)=x, \mathrm{P}(A)=1-x, 1-\mathrm{P}(B), 100-x, x+y=1$
evidence of valid approach
e.g. $0.8(1-x)+0.9 x, 0.8 x+0.9 y$
correct expression
e.g. $0.87=0.8(1-x)+0.9 x, 0.8 \times 0.3+0.9 \times 0.7=0.87,0.8 x+0.9 y=0.87$
70% from B
13. (a) three correct pairs
e.g. $(2,4),(3,3),(4,2), R 2 G 4, R 3 G 3, R 4 G 2$
(b) $p=\frac{1}{16}, q=\frac{2}{16}, r=\frac{2}{16}$
(c) let X be the number of times the sum of the dice is 5 evidence of valid approach
e.g. $X \sim \mathrm{~B}(n, p)$, tree diagram, 5 sets of outcomes produce a win one correct parameter
e.g. $n=4, p=0.25, q=0.75$

Fred wins prize is $\mathrm{P}(X \geq 3)$
appropriate approach to find probability
e.g. complement, summing probabilities, using a CDF function correct substitution
e.g. $1-0.949 \ldots, 1-\frac{243}{256}, 0.046875+0.00390625 \frac{12}{256}+\frac{1}{256}$
probability of winning $=0.0508\left(\frac{13}{256}\right)$
A1 N3 6
14. (a) 36 outcomes (seen anywhere, even in denominator)
valid approach of listing ways to get sum of 5, showing at least two pairs e.g. $(1,4)(2,3),(1,4)(4,1),(1,4)(4,1),(2,3)(3,2)$, lattice diagram
$\mathrm{P}($ prize $)=\frac{4}{36}\left(=\frac{1}{9}\right)$
(b) recognizing binomial probability
e.g. $\mathrm{B}\left(8, \frac{1}{9}\right)$, binomial pdf, $\binom{8}{3}\left(\frac{1}{9}\right)^{3}\left(\frac{8}{9}\right)^{5}$
$\mathrm{P}(3$ prizes $)=0.0426$
15. (a) (i) valid approach

$$
\begin{aligned}
& \text { e.g. } n p, 5 \times \frac{1}{5} \\
& \mathrm{E}(X)=1
\end{aligned}
$$

(ii) evidence of appropriate approach involving binomial
e.g. $X \sim \mathrm{~B}\left(5, \frac{1}{5}\right)$
recognizing that Mark needs to answer 3 or more questions correctly e.g. $\mathrm{P}(X \geq 3)$
valid approach
e.g. $1-\mathrm{P}(X \leq 2), \mathrm{P}(X=3)+\mathrm{P}(X=4)+\mathrm{P}(X=5)$
$\mathrm{P}($ pass $)=0.0579$
A1 N3
(b) (i) evidence of summing probabilities to 1
e.g. $0.67+0.05+(a+2 b)+\ldots+0.04=1$
some simplification that clearly leads to required answer e.g. $0.76+4 a+2 b=1$
$4 a+2 b=0.24$
AG N0
(ii) correct substitution into the formula for expected value
e.g. $0(0.67)+1(0.05)+\ldots+5(0.04)$
some simplification
e.g. $0.05+2 a+4 b+\ldots+5(0.04)=1$
correct equation
e.g. $13 a+5 b=0.75$
evidence of solving
$a=0.05, b=0.02$
(c) attempt to find probability Bill passes
e.g. $\mathrm{P}(Y \geq 3)$
correct value 0.19
Bill (is more likely to pass)
16. $A \sim \mathrm{~N}\left(46,10^{2}\right) B \sim \mathrm{~N}\left(\mu, 12^{2}\right)$
(a) $\mathrm{P}(A>60)=0.0808$

A2 N 2
(b) correct approach
e.g. $\mathrm{P}\left(Z<\frac{60-\mu}{12}\right)=0.85$, sketch

$$
\begin{align*}
& \frac{60-\mu}{12}=1.036 \ldots \tag{A1}\\
& \mu=47.6
\end{align*}
$$

A1 N 2
(c) (i) route A

A1 N1
(ii) METHOD 1
$\mathrm{P}(A<60)=1-0.0808=0.9192 \quad \mathrm{~A} 1$
valid reason
R1
e.g. probability of A getting there on time is greater than probability of B
$0.9192>0.85$

METHOD 2

$\mathrm{P}(B>60)=1-0.85=0.15$
A1
valid reason
R1
e.g. probability of A getting there late is less than probability of B $0.0808<0.15$
(d) (i) let X be the number of days when the van arrives before 07:00
$\mathrm{P}(X=5)=(0.85)^{5}$
$=0.444$
A1 N2
(ii) METHOD 1
evidence of adding correct probabilities
e.g. $\mathrm{P}(X \geq 3)=\mathrm{P}(X=3)+\mathrm{P}(X=4)+\mathrm{P}(X=5)$
correct values $0.1382+0.3915+0.4437$
$\mathrm{P}(X \geq 3)=0.973$
A1 N3

METHOD 2

evidence of using the complement
e.g. $\mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2), 1-p$
correct values $1-0.02661$
$\mathrm{P}(X \geq 3)=0.973$
A1 N3

17. METHOD 1

for independence $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B)$
expression for $\mathrm{P}(A \cap B)$, indicating $\mathrm{P}(B)=2 \mathrm{P}(A)$
e.g. $\mathrm{P}(A) \times 2 \mathrm{P}(A), x \times 2 x$
substituting into $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
correct substitution
e.g. $0.52=x+2 x-2 x^{2}, 0.52=\mathrm{P}(A)+2 \mathrm{P}(A)-2 \mathrm{P}(A) \mathrm{P}(A)$
correct solutions to the equation
e.g. 0.2, 1.3 (accept the single answer 0.2)

$$
\begin{equation*}
\mathrm{P}(B)=0.4 \tag{A2}
\end{equation*}
$$

METHOD 2

for independence $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B)$
expression for $\mathrm{P}(A \cap B)$, indicating $\mathrm{P}(A)=\frac{1}{2} \mathrm{P}(B)$
e.g. $\mathrm{P}(B) \times \frac{1}{2} \mathrm{P}(B), x \times \frac{1}{2} x$
substituting into $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
correct substitution
e.g. $0.52=0.5 x+x-0.5 x^{2}, 0.52=0.5 \mathrm{P}(B)+\mathrm{P}(B)-0.5 \mathrm{P}(B) \mathrm{P}(B)$
correct solutions to the equation
e.g. 0.4, 2.6 (accept the single answer 0.4)
$\mathrm{P}(B)=0.4$ (accept $x=0.4$ if x set up as $\mathrm{P}(B)$)
18. (a) evidence of binomial distribution (may be seen in parts (b) or (c))
e.g. $n p, 100 \times 0.04$
mean $=4$
A1 N 2
(b) $\quad \mathrm{P}(X=6)=\binom{100}{6}(0.04)^{6}(0.96)^{94}$

$$
\begin{equation*}
=0.105 \tag{A1}
\end{equation*}
$$

A1 N 2
(c) for evidence of appropriate approach
e.g. complement, $1-\mathrm{P}(X=0)$

$$
\begin{align*}
& \mathrm{P}(X=0)=(0.96)^{100}=0.01687 \ldots \tag{A1}\\
& \mathrm{P}(\mathrm{X} \geq 1)=0.983
\end{align*}
$$

19. (a) evidence of using binomial probability
e.g. $\mathrm{P}(X=2)=\binom{7}{2}(0.18)^{2}(0.82)^{5}$
$\mathrm{P}(X=2)=0.252$
A1 N2
(b) METHOD 1
evidence of using the complement M1
e.g. $1-(\mathrm{P}(X \leq 1))$
$\mathrm{P}(X \leq 1)=0.632$
$\mathrm{P}(X \geq 2)=0.368$
METHOD 2
evidence of attempting to sum probabilities
e.g. $\mathrm{P}(2$ heads $)+\mathrm{P}(3$ heads $)+\ldots+\mathrm{P}(7$ heads $), 0.252+0.0923+\ldots$
correct values for each probability
e.g. $0.252+0.0923+0.0203+0.00267+0.0002+0.0000061$
$\mathrm{P}(X \geq 2)=0.368$
A1 N2
20. (a) evidence of approach
$e . g$ finding $0.84 \ldots$, using $\frac{23.7-21}{\sigma}$
correct working
e.g. $0.84 \ldots=\frac{23.7-21}{\sigma}$, graph
$\sigma=3.21$
A1 N2
(b) (i) evidence of attempting to find $\mathrm{P}(X<25.4)$
e.g. using $z=1.37$
$\mathrm{P}(X<25.4)=0.915$
A1 N 2
(ii) evidence of recognizing symmetry
e.g. $b=21-4.4$, using $z=-1.37$
$b=16.6$
A1 N2
[7]
21. (a) $X \sim \mathrm{~B}(100,0.02)$
$\mathrm{E}(X)=100 \times 0.02=2$
A1 N1
(b) $\quad \mathrm{P}(X=3)=\binom{100}{3}(0.02)^{3}(0.98)^{97}$
$=0.182$
A1 N2
(c) METHOD 1

$$
\begin{array}{lr}
\mathrm{P}(X>1)=1-\mathrm{P}(X \leq 1)=1-(\mathrm{P}(X=0)+\mathrm{P}(X=1)) & \mathrm{M} 1 \\
=1-\left((0.98)^{100}+100(0.02)(0.98)^{99}\right) & \text { (M1) } \\
=0.597 & \text { A1 } \tag{M1}
\end{array}
$$

METHOD 2

```
\(\mathrm{P}(X>1)=1-\mathrm{P}(X \leq 1)\)
\(=1-0.40327\)

Note: Award marks as follows for finding \(P(X \geq 1)\), if working shown.
\(\mathrm{P}(X \geq 1)\)
A0
\(=1-\mathrm{P}(X \leq 2)=1-0.67668\)
\(=0.323\)
M1(FT)
A1(FT) N0
[6]
22. (a) Using \(\mathrm{E}(X)=\sum_{0}^{2} x \mathrm{P}(X=x)\)

Substituting correctly \(\mathrm{E}(X)=0 \times \frac{3}{10}+1 \times \frac{6}{10}+2 \times \frac{1}{10}\) \(=0.8\)
(b) (i)


A1A1A1 N3
Note: Award A1 for each complementary pair of probabilities,
i.e. \(\frac{4}{6}\) and \(\frac{2}{6}, \frac{3}{5}\) and \(\frac{2}{5}, \frac{4}{5}\) and \(\frac{1}{5}\).
(ii) \(\mathrm{P}(Y=0)=\frac{2}{5} \times \frac{1}{5}=\frac{2}{30}\)
\[
\begin{align*}
& \mathrm{P}(Y=1)=\mathrm{P}(R G)+\mathrm{P}(G R)\left(=\frac{4}{6} \times \frac{2}{5}+\frac{2}{6} \times \frac{4}{5}\right) \\
& =\frac{16}{30} \\
& \mathrm{P}(Y=2)=\frac{4}{6} \times \frac{3}{5}=\frac{12}{30} \tag{A1}
\end{align*}
\]

For forming a distribution
\begin{tabular}{|c|c|c|c|}
\hline\(y\) & 0 & 1 & 2 \\
\hline \(\mathrm{P}(Y=y)\) & \(\frac{2}{30}\) & \(\frac{16}{30}\) & \(\frac{12}{30}\) \\
\hline
\end{tabular}
(c) \(\quad \mathrm{P}(\operatorname{Bag} \mathrm{A})=\frac{2}{6}\left(=\frac{1}{3}\right)\)
\(\mathrm{P}(\) Bag B\()=\frac{4}{6}\left(=\frac{2}{3}\right)\)
For summing \(\mathrm{P}(A \cap R R)\) and \(\mathrm{P}(B \cap R R)\)
Substituting correctly \(\mathrm{P}(R R)=\frac{1}{3} \times \frac{1}{10}+\frac{2}{3} \times \frac{12}{30}\)
\(=0.3\)
(d) For recognising that \(\mathrm{P}(1\) or \(6 \mid R R)=\mathrm{P}(A \mid R R)=\frac{\mathrm{P}(A \cap R R)}{\mathrm{P}(R R)}\)
\(=\frac{1}{30} \div \frac{27}{90}\)
\(=0.111\)
23. (a) \(\mathrm{P}(H<153)=0.705 \Rightarrow z=0.538(836 \ldots)\)

Standardizing \(\frac{153-\mu}{5}\)
Setting up their equation \(0.5388 \ldots=\frac{153-\mu}{5}\)
\(\mu=150.30 \ldots\)
\[
=150(\text { to } 3 \mathrm{sf})
\]

A1 N3
(b) \(\quad Z=\frac{153-\mu}{5}=1.138 \ldots \quad\) (accept 1.14 from \(\mu=150.3\), or 1.2 from \(\mu=150\) )
\(\mathrm{P}(Z>1.138)=0.128 \quad\) (accept 0.127 from \(z=1.14\), or 0.115 from \(z=1.2\) )
24. (a) 0.0668

A2 N 2
(b) Using the standardized value 1.645
\(k=26.1 \mathrm{~kg}\)
A1 N2
(c)


Note: Award Al for vertical line to right of the mean, Al for shading to left of their vertical line.
25. (a)


Note: Award Al for each pair of complementary probabilities.
(b) \(\mathrm{P}(E)=\frac{1}{6} \times \frac{5}{6}+\frac{5}{6} \times \frac{1}{6} \quad\left(=\frac{5}{36}+\frac{5}{36}\right)\)
\[
=\frac{10}{36}\left(=\frac{5}{18} \text { or } 0.278\right)
\]

A1 N3
(c) Evidence of recognizing the binomial distribution
\(e g X \sim \mathrm{~B}\left(5, \frac{5}{18}\right)\) or \(p=\frac{5}{18}, q=\frac{13}{18}\)
\(\mathrm{P}(X=3)=\binom{5}{3}\left(\frac{5}{18}\right)^{3}\left(\frac{13}{18}\right)^{2}\) (or other evidence of correct setup) \(=0.112\)
(d) METHOD 1

Evidence of using the complement
eg \(\mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2)\)
Correct value \(1-0.865\)
\[
=0.135
\]

\section*{METHOD 2}

Evidence of adding correct probabilities M1
eg \(\mathrm{P}(X \geq 3)=\mathrm{P}(X=3)+\mathrm{P}(X=4)+\mathrm{P}(X=5)\)
Correct values \(0.1118+0.02150+0.001654\)
\[
=0.135
\]
(A1)
A1 N2
[12]
26. (a) \(\mathrm{P}(F \cup S)=1-0.14(=0.86)\)

Choosing an appropriate formula
\(e g \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)\)
Correct substitution
\(e g \mathrm{P}(F \cap S)=0.93-0.86\) A1
\(\mathrm{P}(F \cap S)=0.07\)
AG N0
Notes: There are several valid approaches. Award (A1)(M1)A1 for relevant working using any appropriate strategy eg formula, Venn Diagram, or table.
Award no marks for the incorrect solution
\[
\mathrm{P}(F \cap S)=1-\mathrm{P}(F)+\mathrm{P}(S)=1-0.93=0.07
\]
(b) Using conditional probability
\[
\begin{align*}
& \text { eg } \mathrm{P}(F \mid S)\left(=\frac{\mathrm{P}(F \cap S)}{\mathrm{P}(S)}\right) \\
& \begin{aligned}
\mathrm{P}(F \mid S) & =\frac{0.07}{0.62} \\
\quad & =0.113
\end{aligned} \tag{A1}
\end{align*}
\]

A1 N3
(c) \(\quad F\) and \(S\) are not independent A1 N1

\section*{EITHER}

If independent \(\mathrm{P}(F \mid S)=\mathrm{P}(F), 0.113 \neq 0.31\)
R1R1 N2
OR
If independent \(\mathrm{P}(F \cap S)=\mathrm{P}(F) \mathrm{P}(S), 0.07 \neq 0.31 \times 0.62(=0.1922) \quad \mathrm{R} 1 \mathrm{R} 1\)N2
(d) Let \(\mathrm{P}(F)=x\)
\(\mathrm{P}(S)=2 \mathrm{P}(F)(=2 x)\)
For independence \(\mathrm{P}(F \cap S)=\mathrm{P}(F) \mathrm{P}(S)\left(=2 x^{2}\right)\)
Attempt to set up a quadratic equation
eg \(\mathrm{P}(F \cup S)=\mathrm{P}(F) \mathrm{P}(S)-\mathrm{P}(F) \mathrm{P}(S), 0.86=x+2 x-2 x^{2}\)
\(2 x^{2}-3 x+0.86=0\)
A2
\(x=0.386, x=1.11\)
\(\mathrm{P}(F)=0.386\)
(A1) N 5
27.

Note: Candidates may be using tables in this question, which leads to a variety of values. Accept reasonable answers that are consistent with working shown.
\[
W \sim \mathrm{~N}\left(2.5,0.3^{2}\right)
\]
(b) (i) \(\quad X \sim \mathrm{~B}(10,0.7935 \ldots)\)

Evidence of calculation M1
eg \(\mathrm{P}(X=10)=(0.7935 \ldots)^{10}\)
\(\mathrm{P}(X=10)=0.0990(3 \mathrm{sf})\)
A1 N1
(ii) METHOD 1

Recognizing \(X \sim \mathrm{~B}(10,0.7935 \ldots) \quad\) (may be seen in (i))
\(\mathrm{P}(X \leq 6)=0.1325 \ldots(\) or \(\mathrm{P}(X=1)+\ldots+\mathrm{P}(X=6))\)
evidence of using the complement
eg \(\mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6), \mathrm{P}(X \geq 7)=1-\mathrm{P}(X<7)\)
\(\mathrm{P}(X \geq 7)=0.867\)
A1 N3
METHOD 2
Recognizing \(X \sim \mathrm{~B}(10,0.7935 \ldots) \quad\) (may be seen in (i))
For adding terms from \(\mathrm{P}(X=7)\) to \(\mathrm{P}(X=10)\)
\[
\begin{align*}
\mathrm{P}(X \geq 7) & =0.209235+0.301604+0.257629+0.099030  \tag{A1}\\
& =0.867
\end{align*}
\]

A1 N3
28. (a) \(z=\frac{180-160}{20}=1\)
\(\phi(1)=0.8413\)
\(\mathrm{P}(\) height \(>180)=1-0.8413\)
\[
=0.159
\]

A1 N3
(b) \(z=-1.1800\)
\[
\begin{align*}
\text { Setting up equation }-1.18 & =\frac{d-160}{20}  \tag{M1}\\
d & =136
\end{align*}
\]

A1 N3
29.

Notes: Accept any suitable notation, as long as thecandidate's intentions are clear.
The following symbols will be used in the markscheme.
Girls' height \(G \sim N\left(155,10^{2}\right)\), boys' height \(B \sim N(160\), \(12^{2}\) )
Height H, Female F, Male M.
(a) \(\mathrm{P}(G>170)=1-\mathrm{P}(G<170)\)

A1 N3
(b) \(\mathrm{z}=-1.2816\)

A1 N3
(c) Calculating one variable
\[
\begin{aligned}
& \text { eg } \mathrm{P}(B<r)=0.95, z=1.6449 \\
& r=160+1.645(12)=179.74 \\
& \quad=180
\end{aligned}
\]

Any valid calculation for the second variable, including use of symmetry
eg \(\mathrm{P}(B<q)=0.05, z=-1.6449\)
\(q=160-1.645(12)=140.26\)
\(=140\)
A1 N2

Note: Symbols are not required in parts (d) and (e).
(d) \(\mathrm{P}(M \cap(B>170))=0.4 \times 0.2020, \mathrm{P}(F \cap(G>170))=\) \(0.6 \times 0.0668\)
(A1)(A1)
\[
\begin{aligned}
\mathrm{P}(\mathrm{H}>170) & =0.0808+0.04008 \\
& =0.12088=0.121(3 \mathrm{sf})
\end{aligned}
\]

A1 N2
(e) \(\mathrm{P}(F \mid H>170)=\frac{\mathrm{P}(F \cap(H>170))}{\mathrm{P}(\mathrm{H}>170)}\)
\[
\begin{array}{ll}
=\frac{0.60 \times 0.0668}{0.121} & \left(=\frac{0.0401}{0.121} \text { or } \frac{0.04008}{0.1208}\right) \\
=0.332 & \mathrm{~A} 1 \\
\text { A1 N1 }
\end{array}
\]
30. METHOD 1 Use of the GDC
(a) Evidence of using the binomial facility,
that is set up with \(P=\frac{1}{2}\) and \(n=5\).
\[
\mathrm{P}(X=3)=0.3125 \quad\left(0.313, \frac{5}{16}\right)
\]
(b) Evidence of set up, with \(1-\mathrm{P}(X=0)\)
\[
=0.969\left(=\frac{31}{32}\right)
\]

\section*{METHOD 2 Use of the formula}
(a) Evidence of binomial formula
\[
\begin{aligned}
\mathrm{P}(X=3) & =\binom{5}{3}\binom{1}{2}^{5} \\
& =\frac{5}{16}(=0.313)
\end{aligned}
\]
(b) METHOD 1
\(\mathrm{P}(\) at least one head \()=1-\mathrm{P}(X=0)\)
\[
\begin{align*}
& =1-\left(\frac{1}{2}\right)^{5}  \tag{M1}\\
& =\frac{31}{32}(=0.969)
\end{align*}
\]

\section*{METHOD 2}
\(\mathrm{P}(\) at least one head \()=\mathrm{P}(X=1)+\mathrm{P}(X=2)+\mathrm{P}(X=3)+\mathrm{P}(X=4)\)
\[
\begin{equation*}
+\mathrm{P}(X=5) \tag{M1}
\end{equation*}
\]
\[
\begin{array}{ll}
=0.15625+0.3125+0.3125+0.15625+0.03125 & \text { A1 } \\
=0.969 & \text { A1 } \quad \mathrm{N} 2
\end{array}
\]
31. \(X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right), \mathrm{P}(X<3)=0.2, \mathrm{P}(X>8)=0.1\)
\(\mathrm{P}(X<8)=0.9\)
Attempt to set up equations
\(\frac{3-\mu}{\sigma}=-0.8416, \quad \frac{8-\mu}{\sigma}=1.282\)
\(3-\mu=-0.8416 \sigma\)
\(8-\mu=1.282 \sigma\)
\(5=2.1236 \sigma\)
\(\sigma=2.35, \mu=4.99 \quad\) A1A1 4
32. (a) \(X \sim \mathrm{~B}(100,0.02)\)
\[
E(X)=100 \times 0.02=2
\]
(b) \(\quad P(X=3)=\binom{100}{3}(0.02)^{3}(0.98)^{97}\)
\[
=0.182
\]

\section*{(c) METHOD 1}
\[
\begin{array}{lr}
\mathrm{P}(X>1)=1-\mathrm{P}(X \leq 1)=1-(\mathrm{P}(X=0)+\mathrm{P}(X=1) & \mathrm{M} 1 \\
=1-\left((0.98)^{100}+100(0.02)(0.98)^{99}\right) & \text { (M1) }  \tag{M1}\\
=0.597 & \mathrm{~A} 1
\end{array}
\]

\section*{METHOD 2}
\[
\begin{align*}
& \mathrm{P}(X>1)=1-\mathrm{P}(X \leq 1)  \tag{M1}\\
& =1-0.40327 \\
& =0.597
\end{align*}
\]

Note: Award marks as follows for finding \(P(X>1)\), if working shown.
\[
\begin{aligned}
& \mathrm{P}(X \geq 1) \\
& =1-\mathrm{P}(\mathrm{X}<2)=1-0.67668 \\
& =0.323
\end{aligned}
\]
A0
33. \(\quad X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right), \mathrm{P}(X>90)=0.15\) and \(\mathrm{P}(X<40)=0.12\)

Finding standardized values \(1.036,-1.175\)
Setting up the equations \(1.036=\frac{90-\mu}{\sigma},-1.175=\frac{40-\mu}{\sigma}\) \(\mu=66.6, \quad \sigma=22.6\)

A1A1

A1A1
34. (i) \(\mathrm{P}(X>3200)=\mathrm{P}(Z>0.4)\)
\[
\begin{equation*}
=1-0.6554=34.5 \%(=0.345) \tag{A1}
\end{equation*}
\]
(ii) \(\mathrm{P}(2300<X<3300)=\mathrm{P}(-1.4<Z<0.6)\)
\(=0.4192+0.2257\)
\(=0.645\)
\(P(\) both \()=(0.645)^{2}=0.416\)
(A1) (N2)
(iii) \(0.7422=\mathrm{P}(Z<0.65)\)
\[
\begin{equation*}
\frac{d-3000}{500}=0.65 \tag{A1}
\end{equation*}
\]
\[
d=\$ 3325(=\$ 3330 \text { to } 3 \text { s.f. })(\text { Accept } \$ 3325.07)
\]
(A1) (N3)
[8]
35. (a) \(z=\frac{185-170}{20}=0.75\)
\[
\begin{equation*}
\mathrm{P}(Z<0.75)=0.773 \tag{A1}
\end{equation*}
\]
(b) \(z=-0.47\) (may be implied)
\(-0.47=\frac{d-170}{20}\)
\[
\begin{equation*}
d=161 \tag{A1}
\end{equation*}
\]
36. (a)
(i) \(\quad a=-1\)
\(b=0.5\)
(ii) (a) 0.841
(b) \(0.6915-0.1587\) (or \(0.8413-0.3085\) )
\(=0.533(3 \mathrm{sf})\)
(A1)
(A1)
(A1)
(A2)
(N2)
(b) (i) Sketch of normal curve
(A1)(A1)

(ii) \(c=0.647\)
(A2) 4
37. Method 1
\(b^{2}-4 a c=9-4 k\)
\[
\begin{equation*}
9-4 k>0 \tag{M1}
\end{equation*}
\]
\[
\begin{equation*}
2.25>k \tag{M1}
\end{equation*}
\]
crosses the \(x\)-axis if \(k=1\) or \(k=2\)
probability \(=\frac{2}{7}\)
(A1)
(A1) (C6)

\section*{Method 2}

(M2)(M1)
Note: Award (M2) for one (relevant) curve; (M1) for a second one.
\[
\begin{align*}
& k=1 \text { or } k=2  \tag{G1}\\
& \text { probability }=\frac{2}{7} \tag{A1}
\end{align*}
\]
38. \(\quad X \sim N\left(80,8^{2}\right)\)
(a) \(\mathrm{P}(X<72)=\mathrm{P}(Z<-1)\)
\[
=1-0.8413
\]
\[
\begin{equation*}
=0.159 \tag{A1}
\end{equation*}
\]

OR
\(\mathrm{P}(X<72)=0.159\)
(b) (i) \(\mathrm{P}(72<X<90)=\mathrm{P}(-1<\mathrm{Z}<1.25)\)
\[
\begin{align*}
& =0.3413+0.3944  \tag{M1}\\
& =0.736 \tag{A1}
\end{align*}
\]

\section*{OR}
\[
\begin{equation*}
\mathrm{P}(72<X<90)=0.736 \tag{A1}
\end{equation*}
\]
(ii)

(A1)(A1)
Note: Award (A1) for a normal curve and (A1) for the shaded area, which should not be symmetrical.
(c) \(4 \%\) fail in less than \(x\) months
\[
\begin{align*}
\Rightarrow x= & 80-8 \times \Phi^{-1}(0.96)  \tag{M1}\\
& =80-8 \times 1.751  \tag{A1}\\
& =66.0 \text { months } \tag{A1}
\end{align*}
\]

OR
\(x=66.0\) months
(G3) 3
39. (a) \(\mathrm{P}(M \geq 350)=1-\mathrm{P}(M<350)=1-\mathrm{P}\left(Z<\frac{350-310}{30}\right)\)
\[
\begin{align*}
& =1-\mathrm{P}(Z<1.333)=1-0.9088  \tag{M1}\\
& =0.0912 \text { (accept } 0.0910 \text { to } 0.0920) \tag{A1}
\end{align*}
\]

\section*{OR}
\(\mathrm{P}(M \geq 350)=0.0912\)
(b)

\(\mathrm{P}(Z<1.96)=1-0.025=0.975\)
(A1)
\(1.96(30)=58.8\)
\(310-58.8<M<310+58.8 \Rightarrow a=251, b=369\)
OR
\(251<M<369\)
Note: Award (G1) if only one of the end points is correct.
40. (a) (These answers may be obtained from a calculator or by finding \(z\) in each case and the corresponding area.)
\(M \sim N(750,625)\)
(i) \(\mathrm{P}(M<740 \mathrm{~g})=0.345\)

OR
\[
\begin{equation*}
z=-0.4 \quad \mathrm{P}(z<-0.4)=0.345 \tag{A1}
\end{equation*}
\]
(ii) \(\mathrm{P}(M>780 \mathrm{~g})=0.115\)

OR
\[
z=1.2 \quad \mathrm{P}(z>1.2)=1-0.885=0.115
\]
(A1)(A1)
(iii) \(\mathrm{P}(740<M<780)=0.540\)

OR
\[
\begin{equation*}
1-(0.345+0.115)=0.540 \tag{A1}
\end{equation*}
\]
(b) Independent events

Therefore, \(\mathrm{P}(\) both \(<740)=0.345^{2}\)
\[
\begin{equation*}
=0.119 \tag{M1}
\end{equation*}
\]
(c) \(70 \%\) have mass \(<763 \mathrm{~g}\)

Therefore, \(70 \%\) have mass of at least \(750-13\) \(x=737 \mathrm{~g}\)
(A1) 2
41.

Note: Where accuracy is not specified, accept answers with greater than 3 sf accuracy, provided they are correct as far as \(3 s f\)
(a) \(z=\frac{197-187.5}{9.5}=1.00\)
\(\mathrm{P}(Z>1)=1-\Phi(1)=1-0.8413=0.1587\)
\[
\begin{equation*}
=0.159 \text { (3 sf) } \tag{A1}
\end{equation*}
\]
\[
\begin{equation*}
=15.9 \% \tag{A1}
\end{equation*}
\]

\section*{OR}
\(\mathrm{P}(H>197)=0.159\)
\[
\begin{equation*}
=15.9 \% \tag{G2}
\end{equation*}
\]
(b) Finding the \(99^{\text {th }}\) percentile
\[
\begin{align*}
& \Phi(a)=0.99 \Rightarrow a=2.327(\text { accept } 2.33)  \tag{A1}\\
& \Rightarrow 99 \% \text { of heights under } 187.5+2.327(9.5)=209.6065  \tag{M1}\\
&=210(3 \mathrm{sf}) \tag{A1}
\end{align*}
\]

OR
\(99 \%\) of heights under 209.6 \(=210 \mathrm{~cm}\) ( 3 sf )
Height of standard doorway \(=210+17=227 \mathrm{~cm}\)
(A1) 4
42. (a) Let \(X\) be the random variable for the IQ.
\(X \sim \mathrm{~N}(100,225)\)
\(\mathrm{P}(90<X<125)=\mathrm{P}(-0.67<Z<1.67)\)
\(=0.701\)
70.1 percent of the population (accept 70 percent).

OR
\(\mathrm{P}(90<X<125)=70.1 \%\)
(b) \(\quad \mathrm{P}(X \geq 125)=0.0475\) (or 0.0478 )
\(\mathrm{P}(\) both persons having IQ \(\geq 125)=(0.0475)^{2}\left(\right.\) or \(\left.(0.0478)^{2}\right)\)
\[
\begin{equation*}
=0.00226(\text { or } 0.00228) \tag{M1}
\end{equation*}
\]
(A1) 3
(c) Null hypothesis \(\left(\mathrm{H}_{0}\right)\) : mean IQ of people with disorder is 100

Alternative hypothesis \(\left(\mathrm{H}_{1}\right)\) : mean IQ of people with disorder is less than 100
\(\begin{aligned} \mathrm{P}(\bar{X}<95.2)=\mathrm{P}\left(Z<\left(\frac{95.2-100}{\frac{15}{\sqrt{25}}}\right)\right) & =\mathrm{P}(Z<-1.6)=1-0.9452 \\ & =0.0548\end{aligned}\)
The probability that the sample mean is 95.2 and the null hypothesis true is \(0.0548>0.05\). Hence the evidence is not sufficient.
(R1) 4
43. (a) \(Z=\frac{25-25.7}{0.50}=-1.4\)
\(\mathrm{P}(Z<-1.4)=1-\mathrm{P}(Z<1.4)\)
\[
\begin{align*}
& =1-0.9192 \\
& =0.0808 \tag{A1}
\end{align*}
\]

OR
\(\mathrm{P}(W<25)=0.0808\)
(b) \(\mathrm{P}(Z<-a)=0.025 \Rightarrow \mathrm{P}(Z<a)=0.975\)
\[
\begin{equation*}
\Rightarrow a=1.960 \tag{A1}
\end{equation*}
\]
\[
\begin{align*}
\frac{25-\mu}{0.50}=-1.96 \Rightarrow \mu & =25+1.96(0.50)  \tag{M1}\\
& =25+0.98=25.98  \tag{A1}\\
& =26.0(3 \mathrm{sf}) \tag{AG}
\end{align*}
\]

\section*{OR}
\[
\begin{align*}
\frac{25.0-26.0}{0.50} & =-2.00  \tag{M1}\\
\mathrm{P}(Z<-2.00) & =1-\mathrm{P}(Z<2.00) \\
& =1-0.9772=0.0228  \tag{A1}\\
& \approx 0.025 \tag{A1}
\end{align*}
\]

\section*{OR}
\[
\begin{equation*}
\mu=25.98 \tag{G2}
\end{equation*}
\]
\(\Rightarrow\) mean \(=26.0(3 \mathrm{sf})\)
(c) Clearly, by symmetry \(\mu=25.5\)
\(Z=\frac{25.0-25.5}{\sigma}=-1.96 \Rightarrow 0.5=1.96 \sigma\)
\(\Rightarrow \sigma=0.255 \mathrm{~kg}\)
(d) On average, \(\frac{\text { cementsaving }}{\text { bag }}=0.5 \mathrm{~kg}\)
\(\frac{\text { cost saving }}{\text { bag }}=0.5(0.80)=\$ 0.40\)
To save \(\$ 5000\) takes \(\frac{5000}{0.40}=12500\) bags
44. (a) Let \(X\) be the lifespan in hours
\[
X \sim \mathrm{~N}\left(57,4.4^{2}\right)
\]

(i) \(\quad a=-0.455(3 \mathrm{sf})\)
\(b=0.682(3 \mathrm{sf})\)
(A1)
(ii) (a) \(\mathrm{P}(X>55)=\mathrm{P}(Z>-0.455)\)
\[
\begin{equation*}
=0.675 \tag{A1}
\end{equation*}
\]
(b) \(\mathrm{P}(55 \leq X \leq 60)=\mathrm{P}\left(\frac{2}{4.4} \leq Z \leq \frac{3}{4.4}\right)\)
\[
\begin{align*}
& \approx \mathrm{P}(0.455 \leq Z \leq 0.682) \\
& \approx 0.6754+0.752-1  \tag{A1}\\
& =0.428(3 \mathrm{sf}) \tag{A1}
\end{align*}
\]

OR
\[
\mathrm{P}(55 \leq X \leq 60)=0.428(3 \mathrm{sf})
\]
(b) \(90 \%\) have died \(\Rightarrow\) shaded area \(=0.9\)

(A1)
Hence \(\quad t=57+(4.4 \times 1.282)\)
\[
\begin{equation*}
=57+5.64 \tag{M1}
\end{equation*}
\]
\[
\begin{equation*}
=62.6 \text { hours } \tag{A1}
\end{equation*}
\]

OR \(\quad t=62.6\) hours
(G3) 5
[10]
45. (a) Note: Candidates using tables may get slightly different answers, especially if they do not interpolate. Accept these answers.
\(P(\) speed \(>50)=0.3=1-\Phi\left(\frac{50-\mu}{10}\right)\)
Hence, \(\frac{50-\mu}{10}=\Phi^{-1}(0.7)\)
\(\mu=50-10 \Phi^{-1}(0.7)\)
\(=44.75599 \ldots . .=44.8 \mathrm{~km} / \mathrm{h}(3 \mathrm{sf})(\) accept 44.7\()\)
(AG) 3
(b) \(\mathrm{H}_{1}\) : "the mean speed has been reduced by the campaign".
(A1) 1
(c) One-tailed; because \(\mathrm{H}_{1}\) involves only " \(<\) ".
(d) For a one-tailed test at \(5 \%\) level, critical region is
\(\mathrm{Z}<\mu_{\mathrm{m}}-1.64 \sigma_{\mathrm{m}}\left(\right.\) accept \(\left.-1.65 \sigma_{m}\right)\)
Now, \(\mu_{\mathrm{m}}=\mu=44.75 \ldots ; \sigma_{\mathrm{m}}=\frac{\sigma}{\sqrt{n}}=\frac{10}{\sqrt{25}}=2\) (allowft)
So test statistic is \(44.75 \ldots-1.64 \times 2=41.47\)
Now \(41.3<41.47\) so reject \(H_{0}\), yes.
(A1) 4

\section*{[10]}
46. (a) Area \(A=0.1\)
(A1) 1
(b) EITHER Since \(p(X \geq 12)=p(X \leq 8)\), then 8 and 12 are symmetrically disposed around the (M1)(R1) mean.
\[
\begin{align*}
\text { Thus mean } & =\frac{8+12}{2}  \tag{M1}\\
& =10 \tag{A1}
\end{align*}
\]

Notes: If a candidate says simply "by symmetry \(\mu=10\) " with no further explanation award [3 marks] (M1, A1, R1). As a full explanation is requested award an additional (A1) for saying since \(p(X<8)=p(X>12)\) and another (A1) for saying that the normal curve is symmetric.
\[
\text { OR } \begin{align*}
p(X \geq 12)=0.1 & \Rightarrow p\left(Z \geq \frac{12-\mu}{\sigma}\right)=0.1  \tag{M1}\\
& \Rightarrow p\left(Z \leq \frac{12-\mu}{\sigma}\right)=0.9 \\
p(X \leq 8)=0.1 & \Rightarrow p\left(Z \leq \frac{8-\mu}{\sigma}\right)=0.1 \\
& \Rightarrow p\left(Z \leq \frac{\mu-8}{\sigma}\right)=0.9 \tag{A1}
\end{align*}
\]

So \(\frac{12-\mu}{\sigma}=\frac{\mu-8}{\sigma}\)
\[
\begin{equation*}
\Rightarrow 12-\mu=\mu-8 \tag{M1}
\end{equation*}
\]
\(\Rightarrow \mu=10\)
(c) \(\Phi\left(\frac{12-10}{\sigma}\right)=0.9\)

Note: Award (A1) for \(\left(\frac{12-10}{\sigma}\right)\), (M1) for standardizing, and (A1) for 0.9 .
\(\Rightarrow \frac{2}{\sigma}=1.282\) (or 1.28 )
\(\sigma=\frac{2}{1.282}\left(\right.\) or \(\left.\frac{2}{1.28}\right)\)
\(=1.56(3 \mathrm{sf})\)
(AG)
Note: Working backwards from \(\sigma=1.56\) to show it leads the given data should receive a maximum of [ 3 marks] if done correctly.
(d) \(\quad p(X \leq 11)=p\left(Z \leq \frac{11-10}{1.561}\right)\) (or 1.56\()\)

Note: Award (M1) for standardizing and (A1) for \(\left(\frac{11-10}{1.561}\right)\).
\(=p(Z \leq 0.6407)(\) or 0.641 or 0.64\()\)
\(=\Phi(0.6407)\)
\(=0.739(3 \mathrm{sf})\)
(A1) 5
47. (a) \(p(4\) heads \()=\binom{8}{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{8-4}\)
\[
\begin{align*}
& =\frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4} \times\left(\frac{1}{2}\right)^{8}  \tag{M1}\\
& =\frac{70}{256} \cong 0.273(3 \mathrm{sf}) \tag{A1}
\end{align*}
\]
(b) \(\quad p(3\) heads \()=\binom{8}{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{8-3}=\frac{8 \times 7 \times 6}{1 \times 2 \times 3} \times\left(\frac{1}{2}\right)^{8}\)
\[
\begin{equation*}
=\frac{56}{256} \cong 0.219(3 \mathrm{sf}) \tag{A1}
\end{equation*}
\]
(c) \(\quad p\) (5 heads) \(=p\) ( 3 heads) (by symmetry)
\(p(3\) or 4 or 5 heads \()=p(4)+2 p(3)\)
\(=\frac{70+2 \times 56}{256}=\frac{182}{256}\)
\(\approx 0.711(3 \mathrm{sf})\)
(A1) 3```

