1. (a)
$$\sigma = 3$$
 (A1)

evidence of attempt to find $P(X \le 24.5)$

e.g.
$$z = 1.5, \ \frac{24.5 - 20}{3}$$

P($X \le 24.5$) = 0.933 A1 N3 3

(M1)

N2

(b) (i)

Note: Award A1 with shading that clearly extends to right of the mean, A1 for any correct label, either k, area or their value of k

(ii)
$$z = 1.03(64338)$$
 (A1)
attempt to set up an equation (M1)
 $e.g. \frac{k-20}{3} = 1.0364, \frac{k-20}{3} = 0.85$
 $k = 23.1$ A1 N3

[8]

5

2. (a) correct substitution into formula for E(X)
e.g. 0.05×240
E(X) = 12(A1)
A1
N2

(b) evidence of recognizing binomial probability (may be seen in part (a)) (M1)

e.g.
$$\binom{240}{15} (0.05)^{15} (0.95)^{225}, X \sim B(240, 0.05)$$

P(X =15) = 0.0733 A1 N2 2

	(c)	$P(X \le 9) = 0.236$	(A1)			
		evidence of valid approach	(M1)			
		e.g. using complement, summing probabilities				
		$P(X \ge 10) = 0.764$	A1	N3	3	[7]
						[/]
3.	(a)	symmetry of normal curve	(M1)			
		<i>e.g.</i> $P(X < 25) = 0.5$				
		P(X > 27) = 0.2	A1	N2	2	
	(b)	METHOD 1				
	(0)	finding standardized value	(A1)			
			(111)			
		e.g. $\frac{27-25}{\sigma}$				
		evidence of complement	(M1)			
		<i>e.g.</i> $1-p$, $P(X < 27)$, 0.8				
		finding <i>z</i> -score	(A1)			
		<i>e.g.</i> $z = 0.84$				
		attempt to set up equation involving the standardized value	M1			
		e.g. $0.84 = \frac{27 - 25}{\sigma}, 0.84 = \frac{X - \mu}{\sigma}$				
		$\sigma = 2.38$	A1	N3	5	
		METHOD 2				
		set up using normal CDF function and probability	(M1)			
		<i>e.g.</i> $P(25 < X < 27) = 0.3$, $P(X < 27) = 0.8$				
		correct equation	A2			
		<i>e.g.</i> $P(25 < X < 27) = 0.3$, $P(X > 27) = 0.2$				
		attempt to solve the equation using GDC	(M1)			
		e.g. solver, graph, trial and error (more than two trials must be shown)				
		$\sigma = 2.38$	A1	N3	5	
						[7]

4. (a) evidence of recognizing binomial probability (may be seen in (b) or (c)) (M1) *e.g.* probability = $\begin{pmatrix} 7 \\ 4 \end{pmatrix}$ (0.9)⁴(0.1)³, X ~ B(7, 0.9), complementary probabilities probability = 0.0230 A1 N2

(b) correct expression A1A1 N2 $e.g. \begin{pmatrix} 7\\ 4 \end{pmatrix} p^4 (1-p)^3, 35p^4 (1-p)^3$ Note: Award A1 for binomial coefficient $\left(\operatorname{accept}\begin{pmatrix} 7\\ 3 \end{pmatrix}\right),$ $A1 \text{ for } p^4 (1-p)^3.$

(c) evidence of attempting to solve **their** equation (M1)
e.g.
$$\binom{7}{4} p^4 (1-p)^3 = 0.15$$
, sketch
 $p = 0.356, 0.770$ A1A1 N3

5. (a) evidence of appropriate approach
e.g. 1 - 0.85, diagram showing values in a normal curve
 $P(w \ge 82) = 0.15$ (M1)A1N2

(b) (i)
$$z = -1.64$$
 A1 N1

- (ii) evidence of appropriate approach (M1) $e.g. -1.64 = \frac{x - \mu}{\sigma}, \frac{68 - 76.6}{\sigma}$ correct substitution A1 $e.g. -1.64 = \frac{68 - 76.6}{\sigma}$ $\sigma = 5.23$ A1 N1
- (c) (i) $68.8 \le \text{weight} \le 84.4$ A1A1A1 N3

Note: Award A1 for 68.8, A1 for 84.4, A1 for giving answer as an interval.

		(ii) evidence of appropriate approach <i>e.g.</i> $P(-1.5 \le z \le 1.5)$, $P(68.76 < y < 84.44)$ P(qualify) = 0.866	(M1) A1	N2	
	(d)	recognizing conditional probability e.g. $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$	(M1)		
		P(woman and qualify) = 0.25×0.7	(A1)		
		$P(\text{woman} \mid \text{qualify}) = \frac{0.25 \times 0.7}{0.866}$	A1		
		$P(\text{woman} \mid \text{qualify}) = 0.202$	A1	N3	[4][]
					[15]
6.	(a)	evidence of attempt to find $P(X \le 475)$ e.g. $P(Z \le 1.25)$	(M1)		
		$P(X \le 475) = 0.894$	A1	N2	
	(b)	evidence of using the complement <i>e.g.</i> 0.73 , $1-p$	(M1)		
		z = 0.6128	(A1) (M1)		
		e.g. $\frac{a-450}{20} = 0.6128$	(1411)		
		$a = 462^{20}$	A1	N3	[6]
7.	(a)	evidence of using mid-interval values (5, 15, 25, 35, 50, 67.5, 87.5) $\sigma = 19.8$ (cm)	(M1) A2	N3	
	(b)	(i) $Q_1 = 15, Q_3 = 40$ IQR = 25 (accept any notation that suggests the interval 15 to 40)	(A1)(A1) A1	N3	
		(ii) METHOD 1			
		60 % have a length less than k $0.6 \times 200 = 120$	(A1) (A1)		
		<i>k</i> 30 (cm)	Aĺ	N2	

METHOD 2

$$\begin{array}{ll} 0.4 \times 200 = 80 & (A1) \\ 200 - 80 = 120 & (A1) \\ k = 30 \ (cm) & A1 & N2 \end{array}$$

(c)
$$l < 20 \text{ cm} \Rightarrow 70 \text{ fish}$$
 (M1)

$$P(small) = \frac{70}{200} \ (= 0.35)$$
A1 N2

(u)	(d))
-----	---	----	---

Cost \$X	4	10	12
$\mathbf{P}(X=x)$	0.35	0.565	0.085

	AIAI	N2	
correct substitution (of their <i>p</i> values) into formula for $E(X)$ <i>e.g.</i> $4 \times 0.35 + 10 \times 0.565 + 12 \times 0.085$	(A1)		
E(X) = 8.07 (accept \$8.07)	A1	N2	[15]
	correct substitution (of their <i>p</i> values) into formula for $E(X)$ <i>e.g.</i> $4 \times 0.35 + 10 \times 0.565 + 12 \times 0.085$ E(X) = 8.07 (accept \$8.07)	AIAIcorrect substitution (of their p values) into formula for $E(X)$ (A1)e.g. $4 \times 0.35 + 10 \times 0.565 + 12 \times 0.085$ (A1) $E(X) = 8.07$ (accept \$8.07)A1	A1A1N2correct substitution (of their p values) into formula for $E(X)$ (A1)e.g. $4 \times 0.35 + 10 \times 0.565 + 12 \times 0.085$ (A1) $E(X) = 8.07$ (accept \$8.07)A1

8. (a)
$$E(X) = 2$$
 A1 N1

(b) evidence of appropriate approach involving binomial (M1) $e.g. \begin{pmatrix} 10 \\ 3 \end{pmatrix} (0.2)^3, (0.2)^3 (0.8)^7, X \sim B(10, 0.2)$ P(X = 3) = 0.201 A1 N2

(c) **METHOD 1** $P(X \le 3) = 0.10737 + 0.26844 + 0.30199 + 0.20133 (= 0.87912...)$ (A1) evidence of using the complement (seen anywhere) (M1) *e.g.* 1 – any probability, $P(X > 3) = 1 - P(X \le 3)$ P(X > 3) = 0.121 A1 N2

METHOD 2

recognizing that $P(X > 3) = P(X \ge 4)$ (M1) *e.g.* summing probabilities from X = 4 to X = 10

correct expression or values (A1)
$$\frac{10}{10}$$

9.
$$X \sim N(7, 0.5^2)$$

(a)(i)
$$z = 2$$

 $P(X < 8) = P(Z < 2) = 0.977$ (M1)
A1(ii)evidence of appropriate approach
 $e.g.$ symmetry, $z = -2$
 $P(6 < X < 8) = 0.954$ (tables 0.955)(M1)
A1

(b) (i)

Note: Award A1 for d to the left of the mean, A1 for area to the left of d shaded.

(ii) z = -1.645 (A1)

$$\frac{d-7}{0.5} = -1.645 \tag{M1}$$

A1A1

N2

(c)
$$Y \sim N(\mu, 0.5^2)$$

 $P(Y < 5) = 0.2$ (M1)
 $z = -0.84162...$ A1
 $\frac{5-\mu}{0.5} = -0.8416$ (M1)
 $\mu = 5.42$ A1 N3

[13]

10. (a)

A1A1 N2

Notes: Award A1 for three re.g.ions, (may be shown by lines or shading) A1 for clear labelling of two re.g.ions (may be shown by percentages or cate.g.ories). r and t need not be labelled, but if they are, they may be interchanged.

(b) METHOD 1

P(X < r) = 0.1292	(A1)	
r = 6.56	A1	N2
1 - 0.1038 (= 0.8962) (may be seen later) P(X < t) = 0.8962	A1 (A1)	
t = 7.16	A1	N2

METHOD 2

finding z-values -1.130..., 1.260...A1A1evidence of setting up one standardized equation(M1)r = 6.84 $t = 1.260 \times 0.25 \pm 6.84$

e.g.
$$r = 6.56, t = 7.16$$
 A1A1 N2N2

[7]

11.	$X \sim 1$ P(X Find Setti $\mu = 0$	N(μ , σ^2) > 90) = 0.15 and P(X < 40) = 0.12 ing standardized values 1.036, -1.175 ng up the equations $1.036 = \frac{90 - \mu}{\sigma}$, -1.175 = $\frac{40 - \mu}{\sigma}$ 66.6, σ = 22.6	A	(M1) A1A1 (M1) A1A1 N2	2N2	[6]
12.	(a)	evidence of valid approach involving <i>A</i> and <i>B</i> <i>e.g.</i> $P(A \cap pass) + P(B \cap pass)$, tree diagram	(M1)			
		correct expression	(A1)			
		<i>e.g.</i> $P(pass) = 0.6 \times 0.8 + 0.4 \times 0.9$				
		P(pass) = 0.84	A1	N2	3	
	(b)	evidence of recognizing complement (seen anywhere)	(M1)			
		<i>e.g.</i> $P(B) = x$, $P(A) = 1 - x$, $1 - P(B)$, $100 - x$, $x + y = 1$				
		evidence of valid approach	(M1)			
		$e.g. \ 0.8(1-x) + 0.9x, \ 0.8x + 0.9y$				
		correct expression	A1			
		<i>e.g.</i> $0.87 = 0.8(1 - x) + 0.9x$, $0.8 \times 0.3 + 0.9 \times 0.7 = 0.87$, $0.8x + 0.9 \times 0.7 = 0.87$	0.9y = 0.87			
		70 % from B	Al	N2	4	[7]
13.	(a)	three correct pairs e.g. (2, 4), (3, 3), (4, 2), R2G4, R3G3, R4G2	A1A1A1	N3	3	

(b) $p = \frac{1}{16}, q = \frac{2}{16}, r = \frac{2}{16}$ A1A1A1 N3 3

- let *X* be the number of times the sum of the dice is 5 (c) evidence of valid approach (M1) e.g. $X \sim B(n, p)$, tree diagram, 5 sets of outcomes produce a win one correct parameter (A1) *e.g.* n = 4, p = 0.25, q = 0.75Fred wins prize is $P(X \ge 3)$ (A1) appropriate approach to find probability M1 e.g. complement, summing probabilities, using a CDF function correct substitution (A1) *e.g.* $1 - 0.949..., 1 - \frac{243}{256}, 0.046875 + 0.00390625 + \frac{12}{256} + \frac{1}{256}$ probability of winning = 0.0508 $\left(\frac{13}{256}\right)$ A1 N3 6
- **14.** (a)36 outcomes (seen anywhere, even in denominator)(A1)valid approach of listing ways to get sum of 5, showing at least two pairs
e.g. (1, 4)(2, 3), (1, 4)(4, 1), (1, 4)(4, 1), (2, 3)(3, 2), lattice diagram(M1)P(prize) = $\frac{4}{36} \left(= \frac{1}{9} \right)$ A1N3
 - (b) recognizing binomial probability (M1) *e.g.* $B\left(8, \frac{1}{9}\right)$, binomial pdf, $\binom{8}{3}\left(\frac{1}{9}\right)^3\left(\frac{8}{9}\right)^5$ P(3 prizes) = 0.0426 A1 N2 [5]

15. (a) (i) valid approach
 $e.g. np, 5 \times \frac{1}{5}$
E(X) = 1(M1)
A1

[12]

	(ii)	evidence of appropriate approach involving binomial	(M1)		
		$e.g. \ X \sim B\left(5, \frac{1}{5}\right)$			
		recognizing that Mark needs to answer 3 or more questions correctly <i>e.g.</i> $P(X \ge 3)$	(A1)		
		valid approach <i>e.g.</i> $1 - P(X \le 2), P(X = 3) + P(X = 4) + P(X = 5)$	M1		
		P(pass) = 0.0579	A1	N3	
(b)	(i)	evidence of summing probabilities to 1 <i>e.g.</i> $0.67 + 0.05 + (a + 2b) + + 0.04 = 1$	(M1)		
		some simplification that clearly leads to required answer <i>e.g.</i> $0.76 + 4a + 2b = 1$	A1		
		4a + 2b = 0.24	AG	N0	
	(ii)	correct substitution into the formula for expected value <i>e.g.</i> $0(0.67) + 1(0.05) + + 5(0.04)$	(A1)		
		some simplification <i>e.g.</i> $0.05 + 2a + 4b + + 5(0.04) = 1$	(A1)		
		correct equation e.g. $13a + 5b = 0.75$	A1		
		evidence of solving	(M1)		
		a = 0.05, b = 0.02	A1A1	N4	
(c)	attem <i>e.g</i> . P	pt to find probability Bill passes $P(Y \ge 3)$	(M1)		
	correc Bill (i	ct value 0.19 is more likely to pass)	A1 A1	N0	[17]

16. $A \sim N(46, 10^2) B \sim N(\mu, 12^2)$

- (a) P(A > 60) = 0.0808 A2 N2
 - (b) correct approach (A1) $e.g. P\left(Z < \frac{60 - \mu}{12}\right) = 0.85$, sketch $\frac{60 - \mu}{12} = 1.036...$ (A1) $\mu = 47.6$ A1 N2
- (c) (i) route A A1 N1

IB Questionbank Maths SL

(ii) METHOD 1

P(A < 60) = 1 - 0.0808 = 0.9192	A1	
valid reason	R1	
<i>e.g.</i> probability of A getting there on time is greater than		
probability of <i>B</i>		
0.9192 > 0.85		N2

METHOD 2

 $\begin{array}{ll} P(B > 60) = 1 - 0.85 = 0.15 & A1 \\ \text{valid reason} & R1 \\ e.g. \text{ probability of } A \text{ getting there late is less than probability of } B \\ 0.0808 < 0.15 & N2 \end{array}$

(d)	(i)	let X be the number of days when the van arrives before $07:00$		
		$P(X = 5) = (0.85)^5$	(A1)	
		= 0.444	A1	N2

(ii) METHOD 1

evidence of adding correct probabilities	(M1)	
e.g. $P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)$		
correct values 0.1382 + 0.3915 + 0.4437	(A1)	
$P(X \ge 3) = 0.973$	A1	N3

METHOD 2

evidence of using the complement	(M1)		
<i>e.g.</i> $P(X \ge 3) = 1 - P(X \le 2), 1 - p$			
correct values $1 - 0.02661$	(A1)		
$P(X \ge 3) = 0.973$	A1	N3	
			[13]

17. METHOD 1

for independence $P(A \cap B) = P(A) \times P(B)$ expression for $P(A \cap B)$, indicating $P(B) = 2P(A)$ <i>e.g.</i> $P(A) \times 2P(A), x \times 2x$	(R1) (A1)	
substituting into $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ correct substitution	(M1) A1	
<i>e.g.</i> $0.52 = x + 2x - 2x$, $0.52 = P(A) + 2P(A) - 2P(A)P(A)$ correct solutions to the equation <i>e.g.</i> 0.2 , 1.3 (accept the single answer 0.2)	(A2)	
P(B) = 0.4 METHOD 2	Al	N6
for independence $P(A \cap B) = P(A) \times P(B)$	(R1)	
expression for $P(A \cap B)$, indicating $P(A) = \frac{1}{2}P(B)$	(A1)	
e.g. $P(B) \times \frac{1}{2} P(B), x \times \frac{1}{2} x$		
substituting into $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ correct substitution <i>e.g.</i> $0.52 = 0.5x + x - 0.5x^2$, $0.52 = 0.5P(B) + P(B) - 0.5P(B)P(B)$	(M1) A1	
correct solutions to the equation e.g. 0.4, 2.6 (accept the single answer 0.4)	(A2)	

P(B) = 0.4 (accept x = 0.4 if x set up as P(B)) A1 N6 [7]

18. (a) evidence of binomial distribution (may be seen in parts (b) or (c))(M1) $e.g. np, 100 \times 0.04$ mean = 4A1M2M2M2

(b)
$$P(X = 6) = {\binom{100}{6}} (0.04)^6 (0.96)^{94}$$
 (A1)

= 0.105 A1 N2

 (c) for evidence of appropriate approach
 (M1)

 e.g. complement, 1 - P(X = 0) (A1)

 $P(X = 0) = (0.96)^{100} = 0.01687...$ (A1)

 $P(X \ge 1) = 0.983$ A1

[7]

19.	(a)	evidence of using binomial probability	(M1)		
		<i>e.g.</i> $P(X = 2) = {\binom{7}{2}} (0.18)^2 (0.82)^5$			
		P(X=2) = 0.252	A1	N2	
	(b)	METHOD 1			
		evidence of using the complement $e.g. 1 - (P(X \le 1))$	M1		
		$P(X \le 1) = 0.632$ $P(X \ge 2) = 0.368$	(A1) A1	N2	
		METHOD 2			
		evidence of attempting to sum probabilities e.g. P(2 heads) + P(3 heads) + + P(7 heads), 0.252 + 0.0923 +	M1		
		correct values for each probability	(A1)		
		$e.g. \ 0.252 + 0.0923 + 0.0203 + 0.00267 + 0.0002 + 0.0000061$ $P(X \ge 2) = 0.368$	A1	N2	[5]
20.	(a)	evidence of approach	(M1)		
		<i>e.g.</i> finding 0.84, using $\frac{23.7-21}{\sigma}$			
		correct working	(A1)		
		$e.g. 0.84 = \frac{23.7 - 21}{\sigma}$, graph			
		$\sigma = 3.21$	A1	N2	
	(b)	(i) evidence of attempting to find $P(X < 25.4)$	(M1)		
		<i>e.g.</i> using $z = 1.37$ P(X < 25.4) = 0.915	A1	N2	
		(ii) evidence of recognizing symmetry	(M1)		
		<i>e.g.</i> $b = 21 - 4.4$, using $z = -1.37$	A 1	NO	
		v = 10.0	AI	INZ	[7]

21. (a) $X \sim B(100, 0.02)$ $E(X) = 100 \times 0.02 = 2$ A1 N1

(b)
$$P(X = 3) = {\binom{100}{3}} (0.02)^3 (0.98)^{97}$$
 (M1)
= 0.182 A1 N2

$$= 0.182$$

(c) **METHOD 1**

$P(X > 1) = 1 - P(X \le 1) = 1 - (P(X = 0) + P(X = 1))$	M1	
$= 1 - ((0.98)^{100} + 100(0.02)(0.98)^{99})$	(M1)	
= 0.597	A1	N2

METHOD 2

$\mathbf{P}(X>1)=1-\mathbf{P}(X\leq 1)$ (M1) = 1 - 0.40327(A1) = 0.597 A1 N2

Note: Award marks as follows for finding $P(X \ge 1)$, if working shown.

$P(X \ge 1)$	A0	
$= 1 - P(X \le 2) = 1 - 0.67668$	M1(FT)	
= 0.323	A1(FT) N0	
		[6]

22. (a) Using
$$E(X) = \sum_{0}^{2} x P(X = x)$$
 (M1)
Substituting correctly $E(X) = 0 \times \frac{3}{10} + 1 \times \frac{6}{10} + 2 \times \frac{1}{10}$ A1
 $= 0.8$ A1 N2

(b) (i)

Note: Award A1 for each complementary pair of probabilities,

i.e. $\frac{4}{6}$ and $\frac{2}{6}$, $\frac{3}{5}$ and $\frac{2}{5}$, $\frac{4}{5}$ and $\frac{1}{5}$.

(ii)
$$P(Y=0) = \frac{2}{5} \times \frac{1}{5} = \frac{2}{30}$$
 A1

$$P(Y=1) = P(RG) + P(GR) \left(= \frac{4}{6} \times \frac{2}{5} + \frac{2}{6} \times \frac{4}{5} \right)$$
M1

$$=\frac{16}{30}$$
A1

$$P(Y=2) = \frac{4}{6} \times \frac{3}{5} = \frac{12}{30}$$
For forming a distribution M1

For forming a distribution

у	0	1	2
$\mathbf{P}(Y=y)$	$\frac{2}{30}$	$\frac{16}{30}$	$\frac{12}{30}$

N4

(c)
$$P(Bag A) = \frac{2}{6} \left(= \frac{1}{3} \right)$$
 (A1)

$$P(\text{Bag B}) = \frac{4}{6} \left(= \frac{2}{3} \right) \tag{A1}$$

For summing P(A
$$\cap RR$$
) and P(B $\cap RR$) (M1)
Substituting correctly P(RR) = $\frac{1}{2} \times \frac{1}{10} + \frac{2}{2} \times \frac{12}{20}$ A1

(d) For recognising that P(1 or 6 |
$$RR$$
) = P($A | RR$) = $\frac{P(A \cap RR)}{P(RR)}$ (M1)

$$= \frac{1}{30} \div \frac{27}{90}$$
 A1
= 0.111 A1 N2

[19]

23. (a) $P(H < 153) = 0.705 \Rightarrow z = 0.538(836...)$ (A1) Standardizing $\frac{153-\mu}{5}$ (A1) Setting up their equation $0.5388... = \frac{153-\mu}{5}$ M1 $\mu = 150.30...$ = 150 (to 3sf) A1 N3 (b) $Z = \frac{153-\mu}{5} = 1.138...$ (accept 1.14 from $\mu = 150.3$, or 1.2

from $\mu = 150$)		(A1)		
P(Z > 1.138) = 0.128 from $z = 1.2$)	(accept 0.127 from $z = 1.14$, or 0.115	A1	N2	[6]

24.	(a)	0.0668	A2	N2
	(b)	Using the standardized value 1.645	(A1)	
		k = 26.1 kg	A1	N2

A1A1 N2

Note: Award A1 for vertical line to right of the mean, A1 for shading to left of **their** vertical line.

[6]

25. (a)

A1A1A1 N3

Note: Award A1 for **each pair** of complementary probabilities.

(b)
$$P(E) = \frac{1}{6} \times \frac{5}{6} + \frac{5}{6} \times \frac{1}{6} \left(= \frac{5}{36} + \frac{5}{36} \right)$$
 (A2)

$$= \frac{10}{36} \left(= \frac{5}{18} \text{ or } 0.278 \right)$$
A1 N3

(c) Evidence of recognizing the binomial distribution

$$eg X \sim B\left(5, \frac{5}{18}\right) \text{ or } p = \frac{5}{18}, q = \frac{13}{18}$$

$$P(X = 3) = {\binom{5}{3}} \left(\frac{5}{18}\right)^3 \left(\frac{13}{18}\right)^2 \text{ (or other evidence of correct setup)} \qquad (A1)$$

$$= 0.112 \qquad A1 \qquad N3$$

(d) METHOD 1

M1	
(A1)	
A1	N2
	M1 (A1) A1

METHOD 2

Evidence of adding correct probabilities	M1
$eg P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)$	
Correct values $0.1118 + 0.02150 + 0.001654$	(A1)
= 0.135	A1 N2

[12]	
------	--

(M1)

26.	(a)	$P(F \cup S) = 1 - 0.14 \ (= 0.86)$	(A1)	
		Choosing an appropriate formula	(M1)	
		$eg P(A \cup B) = P(A) + P(B) - P(A \cap B)$		
		Correct substitution		
		$eg \ P(F \cap S) = 0.93 - 0.86$	A1	
		$P(F \cap S) = 0.07$	AG	N0
		<i>Notes:</i> There are several valid approaches. Award (A1)(M1)A1 for relevant working using any appropriate strategy eg formula, Venn Diagram, or table.		
		Award no marks for the incorrect solution		
		P(F ∩ S) = 1 - P(F) + P(S) = 1 - 0.93 = 0.07		

(b) Using conditional probability

(M1)

EITHER

(c)

If independent P(F | S) = P(F), 0.113 \neq 0.31 R1R1 N2 OR

If independent $P(F \cap S) = P(F) P(S), 0.07 \neq 0.31 \times 0.62 (= 0.1922)$ R1R1 N2

(d) Let P(F) = x

$\mathbf{P}(S) = 2\mathbf{P}(F) \ (= 2x)$	(A1)	
For independence $P(F \cap S) = P(F)P(S) (= 2x^2)$	(R1)	
Attempt to set up a quadratic equation	(M1)	
$eg P(F \cup S) = P(F)P(S) - P(F)P(S), 0.86 = x + 2x - 2x^2$		
$2x^2 - 3x + 0.86 = 0$	A2	
x = 0.386, x = 1.11	(A1)	
P(F) = 0.386	(A1)	N5

гл	~1
11	bГ
•	_

Note: Candidates may be using tables in this question, which leads to a variety of values. Accept reasonable answers that are consistent with working shown.

 $W \sim N(2.5, 0.3^2)$

(a) (i) z = -1.67 (accept 1.67) (A1)

P(W < 2) = 0.0478 (accept answers between 0.0475 and 0.0485) A1 N2 (ii) z = 1 (A1)

$$P(W > 2.8) = 0.159$$
 A1 N2

(iii)

A1A1 N2
Note: Award A1 for a vertical line to left of mean andshading to left, A1 for vertical line to right of mean and shading to right.
(iv) Evidence of appropriate calculation M1 eg 1 - (0.047790 + 0.15866), 0.8413 - 0.0478
P = 0.7936 AG N0
Note: The final value may vary depending on what level of accuracy is used. Accept their value in subsequent parts.

27.

(b)	(i)	$X \sim B(10, 0.7935)$			
		Evidence of calculation	M1		
		$eg P(X = 10) = (0.7935)^{10}$			
		P(X = 10) = 0.0990 (3 sf)	A1	N1	
	(ii)	METHOD 1			
		Recognizing $X \sim B(10, 0.7935)$ (may be seen in (i))	(M1)		
		$P(X \le 6) = 0.1325$ (or $P(X = 1) + + P(X = 6)$)	(A1)		
		evidence of using the complement	(M1)		
		$eg P(X \ge 7) = 1 - P(X \le 6), P(X \ge 7) = 1 - P(X < 7)$			
		$P(X \ge 7) = 0.867$	A1	N3	
		METHOD 2			
		Recognizing $X \sim B(10, 0.7935)$ (may be seen in (i))	(M1)		
		For adding terms from $P(X = 7)$ to $P(X = 10)$	(M1)		
		$P(X \ge 7) = 0.209235 + 0.301604 + 0.257629 + 0.099030$	(A1)		
		= 0.867	A1	N3	
					[13]

28. (a)
$$z = \frac{180 - 160}{20} = 1$$
 (A1)
 $\phi(1) = 0.8413$ (A1)
P(height > 180) = 1 - 0.8413

(b)
$$z = -1.1800$$
 (A1)
Setting up equation $-1.18 = \frac{d - 160}{20}$ (M1)

Setting up equation $-1.18 = \frac{d-160}{20}$ d = 136

[6]

A1

N3

29.

	<i>Notes:</i> Accept any suitable notation, as long as thecandidate's intentions are clear.			
	The following symbols will be used in the markscheme.			
	Girls' height $G \sim N(155, 10^2)$, boys' height $B \sim N(10)$ 12^2)	60,		
	Height H, Female F, Male M.			
(a)	P(G > 170) = 1 - P(G < 170)	(A1)		
	$P(G > 170) = P\left(Z < \frac{170 - 155}{10}\right)$	(A1)		
	$P(G > 170) = 1 - \Phi (1.5) = 1 - 0.9332$			
	= 0.0668	A1	N3	
(b)	z = -1.2816	(A1)		
	Correct calculation (eg $x = 155 + -1.282 \times 10$)	(A1)		
	<i>x</i> = 142	A1	N3	
		(1 1)		
(c)	Calculating one variable	(A1)		
	eg P(B < r) = 0.95, z = 1.6449			
	r = 160 + 1.645(12) = 179.74			
	= 180	A1	N2	
	Any valid calculation for the second variable, including use of symmetry	(A1)		
	eg P(B < q) = 0.05, z = -1.6449			
	q = 160 - 1.645(12) = 140.26			
	= 140	A1	N2	
	Note: Symbols are not required in parts (d) and (e).			
(d)	$P(M \cap (B > 170)) = 0.4 \times 0.2020, P(F \cap (G > 170)) = 0.6 \times 0.0668$	$(\Delta 1)(\Delta 1)$		
	$P(H > 170) = 0.0808 \pm 0.04008$			
	$\Gamma(11 > 1/0) = 0.0000 \pm 0.04000$		NO	
	= 0.12088 = 0.121 (3 st)	Al	INZ	

(e)
$$P(F \mid H > 170) = \frac{P(F \cap (H > 170))}{P(H > 170)}$$
 (M1)
 $= \frac{0.60 \times 0.0668}{0.121} \left(= \frac{0.0401}{0.121} \text{ or } \frac{0.04008}{0.1208} \right)$ A1
 $= 0.332$ A1 N1
[17]

30. METHOD 1 Use of the GDC

- (a) Evidence of using the binomial facility, M1 that is set up with $P = \frac{1}{2}$ and n = 5. $P(X = 3) = 0.3125 \quad \left(0.313, \frac{5}{16}\right)$ A2 N2
- (b) Evidence of set up, with 1 P(X = 0)

$$=0.969\left(=\frac{31}{32}\right)$$
 A2 N2

M1

METHOD 2 Use of the formula

(a) Evidence of binomial formula (M1)

$$P(X=3) = {\binom{5}{3}} {\binom{1}{2}}^5$$
A1

$$=\frac{5}{16}$$
 (=0.313) A1 N2

(b) **METHOD 1**

P(at least one head) = 1 - P(X = 0)(M1)

$$= 1 - \left(\frac{1}{2}\right)^5$$
 A1

$$=\frac{31}{32}$$
 (=0.969) A1 N2

METHOD 2

P(at least one head) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)			
+ P(X = 5)	(M1)		
= 0.15625 + 0.3125 + 0.3125 + 0.15625 + 0.031	25 A1		
= 0.969	A1	N2	
			[6]

31.	$X \sim N(\mu, \sigma^2), P(X < 3) = 0.2, P(X > 8) = 0.1$	
	P(X < 8) = 0.9	(M1)
	Attempt to set up equations	(M1)
	$\frac{3-\mu}{\sigma} = -0.8416, \ \frac{8-\mu}{\sigma} = 1.282$	A1A1
	$3 - \mu = -0.8416\sigma$	
	$8 - \mu = 1.282\sigma$	

$$8 - \mu = 1.282\sigma$$

$$5 = 2.1236\sigma$$

$$\sigma = 2.35, \quad \mu = 4.99$$
 A1A1 N4

[6]

1

32. (a)
$$X \sim B(100, 0.02)$$

 $E(X) = 100 \times 0.02 = 2$ A1

(b)
$$P(X = 3) = {\binom{100}{3}} (0.02)^3 (0.98)^{97}$$
 (M1)
= 0.182 A1 2

(c) **METHOD 1** $$\begin{split} \mathsf{P}(X > 1) &= 1 - \mathsf{P}(X \le 1) = 1 - (\mathsf{P}(X = 0) + \mathsf{P}(X = 1)) \\ &= 1 - ((0.98)^{100} + 100(0.02)(0.98)^{99}) \end{split}$$ M1 (M1) = 0.597 A1 2

METHOD 2

		$P(X > 1) = 1 - P(X \le 1)$ = 1 - 0.40327 = 0.597	(M1) (A1) A1	2	
		<i>Note:</i> Award marks as follows for finding $P(X > 1)$, if working shown.			
		$P(X \ge 1) = 1 - P(X < 2) = 1 - 0.67668 = 0.323$	A0 M1(ft) A1(ft)	2	[6]
33.	X ~ N Findi	$N(\mu, \sigma^2)$, $P(X > 90) = 0.15$ and $P(X < 40) = 0.12$ ng standardized values 1.036, -1.175	(M1) A1A1		
	Setti	ng up the equations $1.036 = \frac{90 - \mu}{\sigma}$, $-1.175 = \frac{40 - \mu}{\sigma}$	(M1)		
	$\mu = \epsilon$	$\sigma = 22.6$	A1A1		[6]
34.	(i)	P(X > 3200) = P(Z > 0.4)	(M1)		
		=1-0.6554=34.5% (=0.345)	(A1)	(N2)	
	(ii)	P(2300 < X < 3300) = P(-1.4 < Z < 0.6)	(M1)		
		= 0.4192 + 0.2257			
		= 0.645	(A1)		
		$P(both) = (0.645)^2 = 0.416$	(A1)	(N2)	
	(iii)	0.7422 = P(Z < 0.65)	(A1)		

, iii)		(111)
	$\frac{d-3000}{500} = 0.65$	(A1)

500
$$d = \$ 3325 \ (=\$ 3330 \text{ to } 3 \text{ s.f.}) \ (\text{Accept } \$3325.07)$$
(A1) (N3)

[8]

35. (a)
$$z = \frac{185 - 170}{20} = 0.75$$
 (M1)(A1)
P(Z < 0.75) = 0.773 (A1) (N3)

(b) z = -0.47 (may be implied) (A1)

$$-0.47 = \frac{d - 170}{20} \tag{M1}$$

$$d = 161$$
 (A1) (N3)

IB Questionbank Maths SL

36. (a) (i)
$$a = -1$$
 (A1)
 $b = 0.5$ (A1)
(ii) (a) 0.841 (A2)
(b) 0.6915-0.1587 (or 0.8413-0.3085) (M1)
 -0.533 (3 sf)

(b) (i) Sketch of normal curve (A1)(A1) (ii) c = 0.647 (A2) 4 [10]

37. Method 1

Method 2

(M2)(M1)

Note: Award (M2) for one (relevant) curve; (M1) for a second one.

k = 1 or $k = 2$	(G1)(G1)
probability = $\frac{2}{7}$	(A1) (C6)

[6]

38. $X \sim N(80, 8^2)$

(a) P(X < 72) = P(Z < -1) (M1) = 1 - 0.8413 = 0.159 (A1)

P(X < 72) = 0.159 (G2) 2

(b) (i)
$$P(72 < X < 90) = P(-1 < Z < 1.25)$$
 (M1)
= 0.3413 + 0.3944 (A1)
= 0.736 (A1)
OR
 $P(72 < X < 90) = 0.736$ (G3)

Note: Award (A1) for a normal curve and (A1) for the shaded area, which should not be symmetrical.

(c)	4% fail in less than <i>x</i> months		
	$\Rightarrow x = 80 - 8 \times \Phi^{-1}(0.96)$	(M1)	
	$= 80 - 8 \times 1.751$	(A1)	
	= 66.0 months	(A1)	
	OR		
	x = 66.0 months	(G3) 3	

39. (a)
$$P(M \ge 350) = 1 - P(M < 350) = 1 - P\left(Z < \frac{350 - 310}{30}\right)$$
 (M1)
= $1 - P(Z < 1.333) = 1 - 0.9088$
= 0.0912 (accept 0.0910 to 0.0920) (A1)

$$P(M \ge 350) = 0.0912 \tag{G2}$$

(ii)

5

[10]

Note: Award (G1) if only one of the end points is correct.

[5]

40.	(a)	(These answers may be obtained from a calculator or by finding z in each case and the corresponding area.)			
		<i>M</i> ~	N (750, 625)		
		(i)	P ($M < 740$ g) = 0.345	(G2)	
			OR		
			z = -0.4 $P(z < -0.4) = 0.345$	(A1)(A1)	
		(ii)	P (<i>M</i> > 780 g) = 0.115	(G2)	
			OR		
			z = 1.2 $P(z > 1.2) = 1 - 0.885 = 0.115$	(A1)(A1)	
		(iii)	P(740 < <i>M</i> < 780) = 0.540	(G1)	
			OR		
			1 - (0.345 + 0.115) = 0.540	(A1) 5	
	(b)	Inde	pendent events		
		Ther	efore, P (both < 740) = 0.345 ²	(M1)	
			= 0.119	(A1) 2	
	(c)	70%	have mass < 763 g	(G1)	
		Ther $r = 7$	efore, 70% have mass of at least $750 - 13$	(A1) 2	
		$\lambda = 1$	- · 5	(((()))) 2	[9]

Note: Where accuracy is not specified, accept answers with greater than 3 sf accuracy, provided they are correct as far as 3 sf

(a)	$z = \frac{197 - 187.5}{9.5} = 1.00$	(M1)
	$P(Z > 1) = 1 - \Phi(1) = 1 - 0.8413 = 0.1587$	
	= 0.159 (3 sf)	(A1)
	= 15.9%	(A1)

OR
 (G2)

$$P(H > 197) = 0.159$$
 (G2)

 $= 15.9\%$
 (A1) 3

(b)	Finding the 99 th percentile		
	$\Phi(a) = 0.99 \Longrightarrow a = 2.327$ (accept 2.33)	(A1)	
	$\Rightarrow 99\%$ of heights under $187.5 + 2.327(9.5) = 209.6065$	(M1)	
	= 210 (3 sf)	(A1)	
	OR		
	99% of heights under $209.6 = 210 \text{ cm} (3 \text{ sf})$	(G3)	
	Height of standard doorway = $210 + 17 = 227$ cm	(A1)	4

42.	(a)	Let <i>X</i> be the random variable for the IQ. $X \sim N(100, 225)$		
		P(90 < X < 125) = P(-0.67 < Z < 1.67)	(M1)	
		70.1 percent of the population (accept 70 percent).	(A1)	
		OR		
		P(90 < <i>X</i> < 125) = 70.1%	(G2)	2
	(b)	$P(X \ge 125) = 0.0475$ (or 0.0478)	(M1)	

(-)		()
	P(both persons having IQ ≥ 125) = (0.0475) ² (or (0.0478) ²)	(M1)
	= 0.00226 (or 0.00228)	(A1)

41.

[7]

3

(c) Null hypothesis (H₀): mean IQ of people with disorder is 100 (M1)
 Alternative hypothesis (H₁): mean IQ of people with disorder is less than 100 (M1)

$$P(\overline{X} < 95.2) = P\left(Z < \left(\frac{95.2 - 100}{\frac{15}{\sqrt{25}}}\right)\right) = P(Z < -1.6) = 1 - 0.9452$$
$$= 0.0548$$
(A1)

The probability that the sample mean is 95.2 and the null hypothesis true is 0.0548 > 0.05. Hence the evidence is not sufficient. (R1)

[9]

4

2

43. (a)
$$Z = \frac{25 - 25.7}{0.50} = -1.4$$
 (M1)
 $P(Z < -1.4) = 1 - P(Z < 1.4)$
 $= 1 - 0.9192$

$$= 1 - 0.9192$$

= 0.0808 (A1)

OR

$$P(W < 25) = 0.0808 \tag{G2}$$

(b)
$$P(Z < -a) = 0.025 \Rightarrow P(Z < a) = 0.975$$

 $\Rightarrow a = 1.960$ (A1)
 $\frac{25 - \mu}{0.50} = -1.96 \Rightarrow \mu = 25 + 1.96 (0.50)$ (M1)
 $= 25 + 0.98 = 25.98$ (A1)
 $= 26.0 (3 \text{ sf})$ (AG)

OR

$\frac{25.0 - 26.0}{0.50} = -2.00$	(M1)
P(Z < -2.00) = 1 - P(Z < 2.00)	
= 1 - 0.9772 = 0.0228	(A1)
≈ 0.025	(A1)

OR

$\mu = 25.98$	(G2)	
\Rightarrow mean = 26.0 (3 sf)	(A1)(AG)	3

(c) Clearly, by symmetry
$$\mu = 25.5$$
 (A1)
 $Z = \frac{25.0 - 25.5}{\sigma} = -1.96 \Rightarrow 0.5 = 1.96\sigma$ (M1)
 $\Rightarrow \sigma = 0.255 \text{ kg}$ (A1)

(d) On average,
$$\frac{\text{cementsaving}}{\text{bag}} = 0.5 \text{ kg}$$
 (A1)

$$\frac{\text{cost saving}}{\text{bag}} = 0.5(0.80) = \$0.40 \tag{M1}$$

To save \$5000 takes
$$\frac{5000}{0.40} = 12500$$
 bags (A1) 3

[11]

44. (a) Let X be the lifespan in hours $X \sim N(57, 4.4^2)$

(i)
$$a = -0.455 (3 \text{ sf})$$
 (A1)
 $b = 0.682 (3 \text{ sf})$ (A1)

(ii) (a)
$$P(X > 55) = P(Z > -0.455)$$

= 0.675 (A1)

(b)
$$P(55 \le X \le 60) = P\left(\frac{2}{4.4} \le Z \le \frac{3}{4.4}\right)$$

 $\approx P(0.455 \le Z \le 0.682)$
 $\approx 0.6754 + 0.752 - 1$ (A1)
 $= 0.428 (3sf)$ (A1)

OR

$$P(55 \le X \le 60) = 0.428 (3 \text{ sf}) \tag{G2}$$

(b) 90% have died \Rightarrow shaded area = 0.9

(M1)

45. (a)

Note: Candidates using tables may get slightly different answers, especially if they do not interpolate. Accept these answers.

$$P(\text{speed} > 50) = 0.3 = 1 - \Phi\left(\frac{50 - \mu}{10}\right) \tag{A1}$$

Hence,
$$\frac{50-\mu}{10} = \Phi^{-1}(0.7)$$
 (M1)
 $\mu = 50 - 10\Phi^{-1}(0.7)$ (M1)

$$\mu = 50 - 10\Phi^{-}(0.7)$$

$$= 44.75599 \dots = 44.8 \text{ km/h} (3 \text{ sf}) (\text{accept } 44.7) \tag{M1}$$
(AG) 3

(b)
$$H_1$$
: "the mean speed has been reduced by the campaign". (A1) 1

(c) One-tailed; because
$$H_1$$
 involves only "<". (A2) 2

(d) For a one-tailed test at 5% level, critical region is

$$Z < \mu_m - 1.64\sigma_m (accept - 1.65\sigma_m)$$
 (M1)

Now,
$$\mu_{\rm m} = \mu = 44.75...; \sigma_{\rm m} = \frac{\sigma}{\sqrt{n}} = \frac{10}{\sqrt{25}} = 2 \ (allow ft)$$
 (A1)

So test statistic is
$$44.75... - 1.64 \times 2 = 41.47$$
 (A1)

Now
$$41.3 < 41.47$$
 so reject H₀, yes. (A1) 4

[10]

46. (a) Area
$$A = 0.1$$
 (A1) 1

(b) EITHER Since $p(X \ge 12) = p(X \le 8)$, (M1) then 8 and 12 are symmetrically disposed around the (M1)(R1) mean.

Thus mean =
$$\frac{8+12}{2}$$
 (M1)
= 10 (A1)

Notes: If a candidate says simply "by symmetry $\mu = 10$ " with no further explanation award [3 marks] (M1, A1, R1). As a full explanation is requested award an additional (A1) for saying since p(X < 8) = p(X > 12) and another (A1) for saying that the normal curve is symmetric.

OR
$$p(X \ge 12) = 0.1 \implies p\left(Z \ge \frac{12 - \mu}{\sigma}\right) = 0.1$$
 (M1)
$$\implies p\left(Z \le \frac{12 - \mu}{\sigma}\right) = 0.9$$
 $p(X \le 8) = 0.1 \implies p\left(Z \le \frac{8 - \mu}{\sigma}\right) = 0.1$
$$\implies p\left(Z \le \frac{\mu - 8}{\sigma}\right) = 0.9$$
(A1)

So
$$\frac{12-\mu}{\sigma} = \frac{\mu-8}{\sigma}$$
 (M1)

$$\Rightarrow 12 - \mu = \mu - 8 \tag{M1}$$
$$\Rightarrow \mu = 10 \tag{A1} 5$$

(c)
$$\Phi\left(\frac{12-10}{\sigma}\right) = 0.9$$
 (A1)(M1)(A1)
Note: Award (A1) for $\left(\frac{12-10}{\sigma}\right)$, (M1) for standardizing, and

(A1) for 0.9.

$$\Rightarrow \frac{2}{\sigma} = 1.282 \text{ (or } 1.28) \tag{A1}$$

$$\sigma = \frac{2}{1.282} \left(\text{or} \frac{2}{1.28} \right)$$
(A1)
= 1.56 (3 sf) (AG)

$$= 1.56 (3 \text{ sf})$$

Note: Working backwards from $\sigma = 1.56$ to show it leads the given data should receive a maximum of [3 marks] if done correctly.

5

(d)
$$p(X \le 11) = p\left(Z \le \frac{11-10}{1.561}\right)$$
 (or 1.56) (M1)(A1)
Note: Award (M1) for standardizing and (A1) for $\left(\frac{11-10}{1.561}\right)$.
 $= p(Z \le 0.6407)$ (or 0.641 or 0.64) (A1)
 $= \Phi(0.6407)$ (M1)
 $= 0.739$ (3 sf) (A1) 5

47. (a)
$$p(4 \text{ heads}) = {\binom{8}{4}} {\left(\frac{1}{2}\right)^4} {\left(\frac{1}{2}\right)^{8-4}}$$
 (M1)
 $= \frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4} \times {\left(\frac{1}{2}\right)^8}$
 $= \frac{70}{256} \approx 0.273 \text{ (3 sf)}$ (A1)

(b)
$$p (3 \text{ heads}) = {\binom{8}{3}} {\left(\frac{1}{2}\right)^3} {\left(\frac{1}{2}\right)^{8-3}} = \frac{8 \times 7 \times 6}{1 \times 2 \times 3} \times {\left(\frac{1}{2}\right)^8}$$

= $\frac{56}{256} \approx 0.219 (3 \text{ sf})$ (A1) 1

(c)
$$p (5 \text{ heads}) = p (3 \text{ heads}) (by symmetry)$$
 (M1)
 $p (3 \text{ or } 4 \text{ or } 5 \text{ heads}) = p (4) + 2p (3)$ (M1)
 $= \frac{70 + 2 \times 56}{256} = \frac{182}{256}$
 $\approx 0.711 (3 \text{ sf})$ (A1) 3

[6]

[16]

2