CHAPTER 10

Section 10-1

1. Graph the two equations in the same coordinate system. Determine the point of intersection (if shown) by inspection. Check by substitution in both equations.
2. By multiplying both sides of the equations by non-zero constants as required, match coefficients of one variable so that they are equal in absolute value and opposite in sign. Add to eliminate one variable, solve the resulting equation for the other, and substitute into the original equations to find the other variable, and check.
3. No. A system of linear equations can have no solution, one solution, or infinitely many solutions.
4. Both lines in the given system are different, but they have the same slope $\left(\frac{1}{2}\right)$ and are therefore parallel. This system corresponds to (b) and has no solution.
5. In slope-intercept form, these equations are $y=2 x-5$ and $y=-\frac{3}{2} x-\frac{3}{2}$. Thus, one has slope 2 and y intercept -5 ; the other has slope $-\frac{3}{2}$ and y intercept $-\frac{3}{2}$. This system corresponds to (d) and its solution can be read from the graph as $(1,-3)$. Checking, we see that $2 x-y=2 \cdot 1-(-3)=5$

$$
3 x+2 y=3 \cdot 1+2(-3)=-3
$$

Note: Checking steps are not shown, but should be performed by the student.

11. $x+y=7$
$x-y=3$
If we add, we can eliminate y.
$x+y=7$
$\begin{aligned} x-y & =3 \\ 2 x & =10\end{aligned}$

$$
x=5
$$

Now substitute $x=5$ back into the top equation and solve for y.

$$
5+y=7
$$

$y=2$
$(5,2)$
15. $3 u+5 v=15$
$6 u+10 v=-30$
If we multiply the top equation by -2 and add, we eliminate both u and v.

$$
\begin{aligned}
-6 u-10 v & =-30 \\
6 u+10 v & =-30 \\
\hline 0 & =-60
\end{aligned}
$$

No solution. The equations represent parallel lines.
13. $3 x-2 y=12$
$7 x+2 y=8$
If we add, we can eliminate y.
$3 x-2 y=12$

$7 x+2 y=8$
$10 x=20$

$x=2$
Now substitute $x=2$ back into the bottom equation and solve for y.

$$
\begin{aligned}
& 7(2)+2 y=8 \\
& 2 y=-6 \\
& y=-3 \\
&(2,-3)
\end{aligned}
$$

17. $3 x-y=-2$
$-9 x+3 y=6$
If we multiply the top equation by 3 and add, we eliminate both x and y.

$$
\begin{aligned}
9 x-3 y & =-6 \\
-9 x+3 y & =6 \\
\hline 0 & =0
\end{aligned}
$$

The system is dependent and has infinite solutions. Solving the first equation for y in terms of x, we obtain $y=3 x+2$. Thus if we let $x=s, y=3 s+2$, we can express the solution set as $\{(s, 3 s+2) \mid s$ any real number $\}$
19. $x-y=4$
$x+3 y=12$
Solve the first equation for x in terms of y.

$$
x=4+y
$$

Substitute into the second equation to eliminate x.

$$
\begin{aligned}
(4+y)+3 y & =12 \\
4 y & =8 \\
y & =2
\end{aligned}
$$

Now replace y with 2 in the first equation to find x.

$$
\begin{aligned}
x-2 & =4 \\
x & =6
\end{aligned}
$$

Solution: $x=6, y=2$
23. $7 m+12 n=-1$
$5 m-3 n=7$
Solve the first equation for n in terms of m.

$$
\begin{gathered}
12 n=-1-7 m \\
n=\frac{-1-7 m}{12}
\end{gathered}
$$

Substitute into the second equation to eliminate n.

$$
\begin{aligned}
5 m-3\left(\frac{-1-7 m}{12}\right) & =7 \\
5 m-\frac{-1-7 m}{4} & =7 \\
20 m+1+7 m & =28 \\
27 m & =27 \\
m & =1 \\
n & =\frac{-1-7(1)}{12} \\
n & =-\frac{2}{3}
\end{aligned}
$$

Solution: $m=1, n=-\frac{2}{3}$
21. $4 x+3 y=26$
$3 x-11 y=-7$
Solve the second equation for x in terms of y.
$3 x=11 y-7$
$x=\frac{11 y-7}{3}$
Substitute into the first equation to eliminate x.

$$
\begin{aligned}
4\left(\frac{11 y-7}{3}\right)+3 y & =26 \\
\frac{44 y-28}{3}+3 y & =26 \\
44 y-28+9 y & =78 \\
53 y & =106 \\
y & =2 \\
x & =\frac{11 \cdot 2-7}{3} \\
x & =5
\end{aligned}
$$

Solution: $x=5, y=2$
25. $y=0.08 x$
$y=100+0.04 x$
Substitute y from the first equation into the
second equation to eliminate y.
$0.08 x=100+0.04 x$
$0.04 x=100$
$x=2,500$
$y=0.08(2,500)$
$y=200$
Solution: $x=2,500, y=200$
27. $\frac{2}{5} x+\frac{3}{2} y=2$

$$
\frac{7}{3} x-\frac{5}{4} y=-5
$$

Eliminate fractions by multiplying both sides of the first equation by 10 and both sides of the second equation by 12 .

$$
\begin{aligned}
10\left(\frac{2}{5} x+\frac{3}{2} y\right) & =20 \\
4 x+15 y & =20 \\
12\left(\frac{7}{3} x-\frac{5}{4} y\right) & =-60 \\
28 x-15 y & =-60
\end{aligned}
$$

Solve the first equation for y in terms of x and substitute into the second equation to eliminate y.

$$
\begin{aligned}
& 15 y=20-4 x \\
& y=\frac{20-4 x}{15} \\
& 28 x-15\left(\frac{20-4 x}{15}\right)=-60 \\
& 28 x-(20-4 x)=-60 \\
& 28 x-20+4 x=-60 \\
& 32 x=-40 \\
& x=-\frac{5}{4} \\
& y=\frac{20-4\left(-\frac{5}{4}\right)}{15}=\frac{20+5}{15}=\frac{5}{3} \quad \text { Solution: } x=-\frac{5}{4}, y=\frac{5}{3}
\end{aligned}
$$

29. $-2.3 y+4.1 z=-14.21$

$$
10.1 y-2.9 z=26.15
$$

If we multiply the top equation by 2.9 and the bottom equation by 4.1 , and add, we can eliminate z.

$$
\begin{aligned}
-6.67 y+11.89 z & =-41.209 \\
41.41 y-11.89 z & =107.215 \\
\hline 34.74 y \quad & =66.006 \\
y & =1.9
\end{aligned}
$$

Now substitute $y=1.9$ back into the first equation and solve for z.

$$
\begin{aligned}
-2.3(1.9)+4.1 z & =-14.21 \\
-4.37+4.1 z & =-14.21 \\
4.1 z & =-9.84 \\
z & =-2.4
\end{aligned}
$$

$$
\text { 31. } \begin{aligned}
-2 x & =2 & & E_{1} \\
x-3 y & =2 & & E_{2} \\
-x+2 y+3 z & =-7 & & E_{3}
\end{aligned}
$$

Solve E_{1} for x.

$$
\begin{aligned}
-2 x & =2 \quad E_{1} \\
x & =-1
\end{aligned}
$$

Substitute $x=-1$ in E_{2} and solve for y.

$$
\begin{aligned}
x-3 y & =2 \quad E_{2} \\
-1-3 y & =2 \\
y & =-1
\end{aligned}
$$

Substitute $x=-1$ and $y=-1$ in E_{3} and solve for z.

$$
\begin{array}{rlrl}
-x+2 y+3 z & =-7 & E_{3} \\
-(-1)+2(-1)+3 z & =-7 \\
z & =-2 & & (-1,-1,-2)
\end{array}
$$

33. $\begin{array}{rr}2 y-z=2 & E_{1} \\ -4 y+2 z=1 & E_{2} \\ x-2 y+3 z=0 & E_{3}\end{array}$

Multiply E_{1} by 2 and add to E_{2}

$$
\begin{array}{rl}
4 y-2 z=4 & 2 E_{1} \\
-4 y+2 z=1 & E_{2} \\
0=5 & E_{4}
\end{array}
$$

A contradiction. No solution.
35. $\begin{array}{cc}x-3 y=2 & E_{1} \\ 2 y+z=-1 & E_{2} \\ x-y+z=1 & E_{3}\end{array}$

Multiply E_{1} by -1 and add to E_{3} to eliminate x.

$$
\begin{aligned}
-x+3 y=-2 & (-1) E_{1} \\
x-y+z=1 & E_{3} \\
\hline 2 y+z=-1 & E_{4}
\end{aligned}
$$

Equivalent system:

$$
\begin{aligned}
x-3 y & =2 & & E_{1} \\
2 y+z & =-1 & & E_{2} \\
2 y+z & =-1 & & E_{4}
\end{aligned}
$$

If E_{2} is multiplied by -1 and added to $E_{4}, 0=0$ results. The system is dependent and equivalent to

$$
\begin{aligned}
& x-3 y=2 \\
& 2 y+z=-1 \\
& \text { Let } y=s . \text { Then } \\
& 2 s+z=-1 \\
& z=-2 s-1 \\
& x-3 s=2 \\
& x=3 s+2
\end{aligned}
$$

Solutions: $\{(3 s+2, s,-2 s-1) \mid s$ is any real number $\}$
37. $2 x+z=-5$
$\begin{array}{rlr}x-3 z & =-6 & E_{2} \\ 4 x+2 y-z & =-9 & E_{3}\end{array}$
Multiply E_{1} by 3 and add to E_{2} to eliminate z.

$6 x+3 z$	$=-15$		$3 E_{1}$
$x-3 z$	$=-6$		E_{2}
$7 x$		$=-21$	
x	$=-3$		E_{4}

Substitute $x=-3$ into E_{1} and solve for z.

$$
\begin{array}{rlr}
2 x+z & =-5 & E_{1} \\
2(-3)+z & =-5 & \\
z & =1
\end{array}
$$

Substitute $x=-3$ and $z=1$ into E_{3} and solve for y.

$$
4(-3)+2 y-1=-9
$$

$$
y=2
$$

$(-3,2,1)$
39. $x-y+z=1$
$2 x+y+z=6 \quad E_{2}$
$7 x-y+5 z=15 \quad E_{3}$

Multiply E_{1} by -2 and add to E_{2} to eliminate x.
Also multiply E_{1} by -7 and add to E_{3} to eliminate x.

$$
\begin{aligned}
-2 x+2 y-2 z=-2 & (-2) E_{1} \\
2 x+y+z=6 & E_{2} \\
\hline 3 y-z=4 & E_{4} \\
-7 x+7 y-7 z=-7 & (-7) E_{1} \\
7 x-y+5 z=15 & E_{3} \\
\hline 6 y-2 z=8 & E_{5}
\end{aligned}
$$

Equivalent system:

$$
\begin{array}{rlrl}
x-y+z & =1 & & E_{1} \\
3 y-z & =4 & E_{4} \\
6 y-2 z & =8 & & E_{5}
\end{array}
$$

If E_{4} is multiplied by -2 and added to $E_{5}, 0=0$ results. The system is dependent and equivalent to

$$
\begin{aligned}
& x-y+z=1 \\
& 3 y-z=4 \\
& \text { Let } y=s . \text { Then } 3 s-z=4 \\
& z=3 s-4 \\
& x-s+(3 s-4)=1 \\
& x=-2 s+5
\end{aligned}
$$

Solutions: $\{(-2 s+5, s, 3 s-4) \mid s$ is any real number $\}$
Add E_{4} to E_{5} to eliminate c

$$
\begin{aligned}
-b+c & =-6 & E_{4} \\
10 b-c & =24 & E_{5} \\
\hline 9 b & =18 &
\end{aligned}
$$

Substitute $b=2$ into E_{4} and solve for c.

$$
\begin{aligned}
-b+c & =-6 \\
-2+c & =-6 \\
c & =-4
\end{aligned}
$$

Substitute $b=2$ and $c=-4$ into E_{2} and solve for a.

$$
\begin{aligned}
& a-3 b+2 c=-15 \\
& a-3(2)+2(-4)=-15 \\
& a=-1 \\
&(-1,2,-4)
\end{aligned}
$$

Multiply E_{4} by -1 and add to E_{5} to eliminate z.

$$
\begin{aligned}
& 3 x+2 y-5 z=34 \\
& 5 x-4 y-2 z=23
\end{aligned}
$$

Multiply E_{1} by $-\frac{3}{2}$ and add to E_{2} to eliminate x.
Also multiply E_{1} by $-\frac{5}{2}$ and add to E_{3} to eliminate x.

$$
\begin{aligned}
-3 x+\frac{9}{2} y-\frac{9}{2} z=\frac{15}{2} & \left(-\frac{3}{2}\right) E_{1} \\
\frac{3 x+2 y-5 z}{}=34 & E_{2} \\
\frac{13}{2} y-\frac{19}{2} z=\frac{83}{2} & E_{4} \\
-5 x+\frac{15}{2} y-\frac{15}{2} z=\frac{25}{2} & \left(-\frac{5}{2}\right) E_{1} \\
\frac{5 x-4 y-2 z}{}=23 & E_{3} \\
\frac{7}{2} y-\frac{19}{2} z=\frac{71}{2} & E_{5}
\end{aligned}
$$

Equivalent system:

$$
\begin{aligned}
& 2 x-3 y+3 z=-5 \\
& \frac{13}{2} y-\frac{19}{2} z=\frac{83}{2} \\
& E_{4} \\
& \frac{7}{2} y-\frac{19}{2} z=\frac{71}{2}
\end{aligned} E_{5}
$$

45.

$$
\begin{aligned}
-x+2 y-z & =-4 & & E_{1} \\
2 x+5 y-4 z & =-16 & & E_{2} \\
x+y-z & =-4 & & E_{3}
\end{aligned}
$$

Multiply E_{1} by 2 and add to E_{2} to eliminate x. Also add E_{1} to E_{3} to eliminate x.

$$
\begin{array}{rc}
-2 x+4 y-2 z=-8 & 2 E_{1} \\
2 x+5 y-4 z=-16 & E_{2} \\
9 y-6 z=-24 & E_{4} \\
-x+2 y-z=-4 & E_{1} \\
x+y-z=-4 & E_{3} \\
\hline 3 y-2 z=-8 & E_{5}
\end{array}
$$

Equivalent system:

$$
\begin{array}{r}
-x+2 y-z=-4 E_{1} \\
9 y-6 z=-24 \quad E_{4} \\
3 y-2 z=-8 \quad E_{5}
\end{array}
$$

47. $x=2+p-2 q$
$y=3-p+3 q$
Solve the first equation for p in terms of q, x, and y and substitute into the second equation to eliminate p, then solve for q in terms of x and y.

$$
\begin{aligned}
& p=x-2+2 q \\
& y=3-(x-2+2 q)+3 q \\
& y=3-x+2-2 q+3 q \\
& y=5-x+q \\
& q=x+y-5
\end{aligned}
$$

Now substitute this expression for q into $p=x-2+2 q$ to find p in terms of x and y.

$$
\begin{aligned}
& p=x-2+2(x+y-5) \\
& p=x-2+2 x+2 y-10 \\
& p=3 x+2 y-12 \quad \text { Solution: } p=3 x+2 y-12, q=x+y-5
\end{aligned}
$$

To check this solution substitute into the original equations to see if true statements result:

$$
\begin{aligned}
& x=2+p-2 q \\
& x \stackrel{?}{=} 2+(3 x+2 y-12)-2(x+y-5) \\
& x \stackrel{?}{=} 2+3 x+2 y-12-2 x-2 y+10 \\
& x \stackrel{V}{=} x
\end{aligned}
$$

49. $a x+b y=h$
$c x+d y=k$
Solve the first equation for x in terms of y and the constants.

$$
\begin{aligned}
a x & =h-b y \\
x & =\frac{h-b y}{a} \quad(a \neq 0)
\end{aligned}
$$

Substitute this expression into the second equation to eliminate x.

$$
\begin{aligned}
& c\left(\frac{h-b y}{a}\right)+d y=k \\
& a c\left(\frac{h-b y}{a}\right)+a d y=a k \\
& c(h-b y)+a d y=a k \\
& c h-b c y+a d y=a k \\
&(a d-b c) y=a k-c h \\
& y=\frac{a k-c h}{a d-b c} \\
& a d-b c \neq 0
\end{aligned}
$$

51. Let $x=$ airspeed of the plane
$y=$ rate at which wind is blowing
Then $x-y=$ ground speed flying from Atlanta to
Los Angeles (head wind)
$x+y=$ ground speed flying from
Los Angeles to Atlanta (tail wind)
Then, applying Distance $=$ Rate \times Time, we have

$$
\begin{aligned}
& 2,100=8.75(x-y) \\
& 2,100=5(x+y)
\end{aligned}
$$

After simplification, we have

$$
\begin{aligned}
& x-y=240 \\
& x+y=420
\end{aligned}
$$

$$
\begin{aligned}
& y=3-p+3 q \\
& y \stackrel{?}{=} 3-(3 x+2 y-12)+3(x+y-5) \\
& y \stackrel{?}{=} 3-3 x-2 y+12+3 x+3 y-15 \\
& y \stackrel{\sqrt{ }}{=} y
\end{aligned}
$$

Similarly, solve the first equation for y in terms of x and the constants.

$$
\begin{aligned}
b y & =h-a x \\
y & =\frac{h-a x}{b} \quad(b \neq 0)
\end{aligned}
$$

Substitute this expression into the second equation to eliminate y.

$$
c x+d\left(\frac{h-a x}{b}\right)=k
$$

$$
b c x+b d\left(\frac{h-a x}{b}\right)=b k
$$

$$
b c x+d(h-a x)=b k
$$

$$
b c x+d h-a d x=b k
$$

$$
(b c-a d) x=b k-d h
$$

$$
x=\frac{b k-d h}{b c-a d} \quad b c-a d \neq 0
$$

or, for consistency with the expression for $y, x=\frac{d h-b k}{a d-b c}$
Solution: $x=\frac{d h-b k}{a d-b c}, y=\frac{a k-c h}{a d-b c} \quad a d-b c \neq 0$

Solve the first equation for x in terms of y and substitute into the second equation. $\quad x=240+y$

$$
\begin{aligned}
240+y+y & =420 \\
2 y & =180 \\
y & =90 \mathrm{mph}=\text { wind rate } \\
x & =240+y \\
x & =240+90 \\
x & =330 \mathrm{mph}=\text { airspeed }
\end{aligned}
$$

53. Let $x=$ time rowed upstream
54. Let $x=$ amount of first batch
$y=$ time rowed downstream
Then $x+y=\frac{1}{4} \quad\left(15 \mathrm{~min}=\frac{1}{4} \mathrm{hr}\right.$. $)$
Since rate upstream $=20-2=18 \mathrm{mph}$ and rate downstream $=20+2=22 \mathrm{mph}$,
applying Distance $=$ Rate \times Time to the equal distances upstream and downstream, we have

$$
18 x=22 y
$$

Solve the first equation for y in terms of x and substitute into the second equation.

$$
\begin{aligned}
y & =\frac{1}{4}-x \\
18 x & =22\left(\frac{1}{4}-x\right) \\
18 x & =5.5-22 x \\
40 x & =5.5 \\
x & =0.1375 \mathrm{hr} .
\end{aligned}
$$

Then the distance rowed upstream

$$
=18 x=18(0.1375)=2.475 \mathrm{~km}
$$

$$
y=\text { amount of second batch }
$$

Then the amount of dark chocolate in any mix of these will be $0.5 x+0.8 y$, hence in 100 pounds of a 68% dark chocolate mix
$0.5 x+0.8 y=0.68(100)$
Also, the amount of milk chocolate in any mix of these will be $0.5 x+0.2 y$, hence since $100-68=32$ percent
$0.5 x+0.2 y=0.32(100)$
For convenience, eliminate decimals by multiplying both sides of both equations by 10 .

$$
\begin{aligned}
& 5 x+8 y=680 \\
& 5 x+2 y=320
\end{aligned}
$$

If we multiply the second equation by -1 and add, we can eliminate x.

$$
\begin{aligned}
5 x+8 y & =680 \\
-5 x-2 y & =-320 \\
\hline 6 y & =360 \\
y & =60
\end{aligned}
$$

Since there are 100 pounds in the mix, clearly $x=40$. $x=40 \mathrm{lbs}$. of $50-50 \mathrm{mix}, y=60 \mathrm{lbs}$. of $80-20 \mathrm{mix}$.
57. "Break even" means Cost = Revenue.

Let $y=$ Cost $=$ Revenue.
Let $x=$ number of CDs sold
$y=$ Revenue $=$ number of $C D s$ sold \times price per $C D$
$y=x(8.00)$
$y=$ Cost $=$ Fixed Cost + Variable Cost $=17,680+$ number of CDs \times cost per CD
$y=17,680+x(4.60)$
Substitute y from the first equation into the second equation to eliminate y.
$8.00 x=17,680+4.60 x$
$3.40 x=17,680$
$x=\frac{17,680}{3.40}$
$x=5,200 \mathrm{CDs}$
59. Let $x=$ number of hours Mexico plant is operated
$y=$ number of hours Taiwan plant is operated

Then (Production at Mexico plant)	+ (Production at Taiwan plant)	$=($ Total Production $)$
$40 x$	+	$20 y$
$32 x$	+	$32 y$

Solve the first equation for y in terms of x and substitute into the second equation.

$$
\begin{aligned}
20 y & =4,000-40 x \\
y & =200-2 x \\
32 x+32(200-2 x) & =4,000 \\
32 x+6,400-64 x & =4,000 \\
-32 x & =-2,400 \\
x & =75 \text { hours Mexico plant } \\
y & =200-2 x=200-2(75)=50 \text { hours Taiwan plant }
\end{aligned}
$$

61. (A) If $p=4$, then $4=0.007 q+3, q=\frac{1}{0.007}=143 \mathrm{~T}$-shirts is the number that suppliers are willing to supply at this price.
$4=-0.018 q+15, q=\frac{11}{0.018}=611 \mathrm{~T}$-shirts is the number that consumers will purchase.
Demand exceeds supply and the price will rise.
(B) If $p=8$, then $8=0.007 q+3, q=\frac{5}{0.007}=714 \mathrm{~T}$-shirts is the number that suppliers are willing to supply.
$8=-0.018 q+15, q=\frac{7}{0.018}=389 \mathrm{~T}$-shirts is the number that consumers will purchase at this price.
Supply exceeds demand and the price will fall.
(D)
(C) Solve $p=0.007 q+3$

$$
p=-0.018 q+15
$$

Substitute the expression for p in terms of q from the first equation into the second equation.

$$
\begin{aligned}
& 0.007 q+3=-0.018 q+15 \\
& 0.025 q+3=15 \\
& 0.025 q=12 \\
& q=480 \mathrm{~T}-\text { shirts is the equilibrium quantity. } \\
& p=0.007(480)+3=\$ 6.36 \text { is the equilibrium price. }
\end{aligned}
$$

63. (A) Write $p=a q+b$.

Since $p=0.60$ corresponds to supply $q=450,0.60=450 a+b$
Since $p=0.90$ corresponds to supply $q=750,0.90=750 a+b$
Solve the first equation for b in terms of a and substitute into the second equation.

$$
\begin{aligned}
b & =0.60-450 a \\
0.90 & =750 a+0.60-450 a \\
0.30 & =300 a \\
a & =0.001 \\
b & =0.60-450 a=0.60-450(0.001)=0.15
\end{aligned}
$$

Thus, the supply equation is $p=0.001 q+0.15$.
(B) Write $p=c q+d$.

Since $p=0.60$ corresponds to demand $q=645,0.60=645 c+d$
Since $p=0.90$ corresponds to demand $q=495,0.90=495 c+d$
Solve the first equation for d in terms of c and substitute into the second equation.

$$
\begin{aligned}
d & =0.60-645 c \\
0.90 & =495 c+0.60-645 c \\
0.30 & =-150 c \\
c & =-0.002 \\
d & =0.60-645 c=0.60-645(-0.002)=1.89
\end{aligned}
$$

Thus, the demand equation is $p=-0.002 q+1.89$.
(C) Solve the system of equations

$$
\begin{aligned}
& p=0.001 q+0.15 \\
& p=-0.002 q+1.89
\end{aligned}
$$

Substitute p from the first equation into the second equation to eliminate p.

$$
\begin{aligned}
& 0.001 q+0.15=-0.002 q+1.89 \\
& 0.003 q=1.74 \\
& q=580 \text { bushels }=\text { equilibrium quantity } \\
& p=0.001 q+0.15=0.001(580)+0.15=\$ 0.73 \text { equilibrium price }
\end{aligned}
$$

65. Let $p=$ time of primary wave
$s=$ time for secondary wave
We know $s-p=16$ (time difference)
To find a second equation, we have to use Distance $=$ Rate \times Time
$5 p=$ distance for primary wave
$3 s=$ distance for secondary wave
These distances are equal, hence $5 p=3 s$
Solve the first equation for s in terms of p and substitute into the second equation to eliminate s.

$$
\begin{aligned}
& s=p+16 \\
& 5 p=3(p+16) \\
& 5 p=3 p+48 \\
& 2 p=48 \\
& p=24 \text { seconds } \\
& s=24+16 \\
& s=40 \text { seconds } \\
& \text { The distance traveled }=5 p=3 s=120 \text { miles }
\end{aligned}
$$

67. Let $x=$ number of lawn mowers manufactured each week
$y=$ number of snowblowers manufactured each week $z=$ number of chain saws manufactured each week
Then
$E_{1} \quad 20 x+30 y+45 z=35,000$ Labor
$E_{2} \quad 35 x+50 y+40 z=50,000$ Materials
$E_{3} \quad 15 x+25 y+10 z=20,000$ Shipping
Multiply E_{3} by -4.5 and add to E_{1} to eliminate z. Also multiply E_{3} by -4 and add to E_{2} to eliminate z.

$$
\begin{array}{rll}
20 x+30 y+45 z & =35,000 & E_{1} \\
-67.5 x-112.5 y-45 z & =-90,000 & (-4.5) E_{3} \\
-47.5 x-82.5 y & =-55,000 & E_{4} \\
35 x+50 y+40 z & =50,000 & E_{2} \\
-60 x-100 y-40 z & =-80,000 & (-4) E_{3} \\
\hline-25 x-50 y & =-30,000 & E_{5}
\end{array}
$$

Equivalent system:

$$
\begin{array}{rlrl}
15 x+25 y+10 z & =20,000 & & E_{3} \\
-47.5 x-82.5 y & =-55,000 & & E_{4} \\
-25 x-50 y & & =-30,000 & \\
E_{5}
\end{array}
$$

Multiply E_{5} by -1.9 and add to E_{4} to eliminate x.

$$
\begin{aligned}
47.5 x+95 y & =57,000 & & (-1.9) E_{5} \\
-47.5 x-82.5 y & =-55,000 & & E_{4} \\
\hline 12.5 y & =2,000 & & \\
y & =160 & &
\end{aligned}
$$

Substitute $y=160$ into E_{5} and solve for x.

$$
\begin{aligned}
-25 x-50 y & =-30,000 \\
-25 x-50(160) & =-30,000 \\
x & =880
\end{aligned}
$$

Substitute $x=880$ and $y=160$ into E_{3} and solve for z.
$15 x+25 y+10 z=20,000 \quad E_{3}$
$15(880)+25(160)+10 z=20,000$

$$
z=280
$$

880 lawn mowers, 160 snow blowers, 280 chain saws.
69. Let $x=$ number of days operating the Michigan plant
$y=$ number of days operating the New York plant
$z=$ number of days operating the Ohio plant
Then
$E_{1} \quad 10 x+70 y+60 z=2,150$
Notebooks

$$
\begin{array}{lll}
E_{2} & 20 x+50 y+80 z=2,300 & \text { Desktops } \\
E_{3} & 40 x+30 y+90 z=2,500 & \text { Servers }
\end{array}
$$

Multiply E_{1} by -2 and add to E_{2} to eliminate x. Also multiply E_{1} by -4 and add to E_{3} to eliminate x.

$-20 x-140 y-120 z$	$=-4,300$
$20 x+50 y+80 z$	$=2,300$
$-90 y-40 z$	$=-2,000$
$-40 x-280 y-240 z$	$=-8,600$
$40 x+30 y+90 z$	$=2,500$
$-250 y-150 z$	$=-6,100$

Equivalent system:

$$
\begin{aligned}
10 x+70 y+60 z & =2,150 & & E_{1} \\
-90 y-40 z & =-2,000 & & E_{4} \\
-250 y-150 z & =-6,100 & & E_{5}
\end{aligned}
$$

Multiply E_{5} by -0.36 and add to E_{4} to eliminate y.

$$
\begin{aligned}
-90 y-40 z & =-2,000 & & E_{4} \\
90 y+54 z & =2,196 & & (0.3 \\
\hline 14 z & =196 & & \\
z & =14 & &
\end{aligned}
$$

Substitute $z=14$ into E_{4} and solve for y.

$$
\begin{array}{rlr}
-90 y-40 z & =-2,000 & E_{4} \\
-90 y-40(14) & =-2,000 & \\
y & =16
\end{array}
$$

Substitute $y=16$ and $z=14$ into E_{1} and solve for x.

$$
\begin{array}{rlr}
10 x+70 y+60 z & =2,150 & E_{1} \\
10 x+70(16)+60(14) & =2,150 & \\
x & =19 &
\end{array}
$$

19 days Michigan plant, 16 days New York plant, 14 days Ohio plant
71. Let
$x=$ amount invested in treasury bonds at 4%
$y=$ amount invested in municipal bonds at 3.5%
$z=$ amount invested in corporate bonds at 4.5%
Then
$E_{1} \quad x+\quad y+\quad z=70,000 \quad$ total investment
$E_{2} 0.04 x+0.035 y+0.045 z=2,900 \quad$ interest income
$E_{3} x=y+z \quad$ tax considerations
Multiply E_{2} by 1,000 and rewrite E_{3} to obtain:

$$
\begin{aligned}
x+y+z & =70,000 & & E_{1} \\
40 x+35 y+45 z & =2,900,000 & & E_{4} \\
x-y-z & =0 & & E_{5}
\end{aligned}
$$

$\operatorname{Add} E_{1}$ and E_{5} to eliminate y and z.

$$
\begin{array}{rlrl}
x+y+z & =70,000 & & E_{1} \\
x-y-z & =0 & E_{5} \\
\hline 2 x & & =70,000 & \\
x & =35,000 &
\end{array}
$$

Substitute $x=35,000$ into E_{1} and E_{4}

$$
\begin{aligned}
35,000+y+z & =70,000 \\
40(35,000)+35 y+45 z & =2,900,000
\end{aligned}
$$

Simplify to obtain

$$
\begin{aligned}
y+z & =35,000 & & E_{6} \\
35 y+45 z & =1,500,000 & & E_{7}
\end{aligned}
$$

Multiply E_{6} by -35 and add to E_{7} to eliminate y.

$$
\begin{array}{rlr}
-35 y-35 z & =-1,225,000 & (-35) E_{6} \\
35 y+45 z & =1,500,000 & E_{7} \\
\hline 10 z & =275,000 & \\
z & =27,500 &
\end{array}
$$

Substitute $z=27,500$ into E_{6} and solve for y.

$$
\begin{aligned}
y+27,500 & =35,000 \\
y & =7,500
\end{aligned}
$$

$\$ 35,000$ treasury bonds, $\$ 7,500$ municipal bonds, $\$ 27,500$ corporate bonds.

Section 10-2

1. The size of a matrix is given by $m \times n$, where m is the number of rows and n is the number of columns.
2. A column matrix is a matrix with only one column. Its size is given by $m \times 1$, where m is the number of rows.
3. $a_{i j}$ is the element in row i, column j of a matrix.
4. The augmented coefficient matrix of a system of equations is the coefficient matrix with one added column, the column of constants.
5. The reduced matrix of a system is a matrix row-equivalent to the augmented coefficient matrix, from which the solutions of the system can be directly read off.
6. No. Condition 2 is violated. 13. Yes 15. No. Condition 4 is violated. 17. Yes
7. $x_{1}=-2$
$x_{2}=3$
$x_{3}=0$ The system is already solved.
8. $\begin{aligned} x_{1} & -2 x_{3}=3 \\ x_{2}+x_{3} & =-5\end{aligned}$

Solution:
$x_{3}=t$
$x_{2}=-5-x_{3}=-5-t$
$x_{1}=3+2 x_{3}=3+2 t$
23. $x_{1}=0$
$x_{2} \quad=0$
$0=1$
The system has no solution.

Thus $x_{1}=2 t+3, x_{2}=-t-5, x_{3}=t$ is the solution for t any real number.

Need a 1 here
Need 0's here

$$
\begin{aligned}
& \sim\left[\begin{array}{rrr|r}
1 & 0 & -3 & 1 \\
0 & 1 & 1_{2} & 0 \\
0 & 0 & 1 & -2
\end{array}\right] \begin{array}{c}
3 R_{3}+R_{1} \rightarrow R_{1} \\
(-2) R_{3}+R_{2} \rightarrow R_{2}
\end{array} \\
& \sim
\end{aligned}
$$

43. $\quad\left[\begin{array}{rrr|r}1 & 2 & -2 & -1 \\ 0 & 3 & -6 & 1 \\ 0 & -1 & 2 & -\frac{1}{3}\end{array}\right] \frac{1}{3} R_{2} \rightarrow R_{2}$

Need a 1 here

$$
\sim\left[\begin{array}{rrr|r}
1 & 2 & \nmid 2 & -1 \\
0 & 1 & -2 & \frac{1}{3} \\
0 & -1 & <_{2} & -\frac{1}{3}
\end{array}\right] \begin{aligned}
& (-2) R_{2}+R_{1} \rightarrow R_{1} \\
& R_{3}+R_{2} \rightarrow R_{3}
\end{aligned}
$$

39. $\left[\begin{array}{rr|r}1 & 2 & -1 \\ 0 & 1 & 3\end{array}\right](-2) R_{2}+R_{1} \rightarrow R_{1}$

Need a 0 here
$\sim\left[\begin{array}{rr|r}1 & 0 & -7 \\ 0 & 1 & 3\end{array}\right]$
25. $x_{1}-2 x_{2}-3 x_{4}=-5$

$$
x_{3}+3 x_{4}=2
$$

Solution:
$x_{4}=t$
$x_{3}=2-3 x_{4}=2-3 t$
$x_{2}=s$
$x_{1}=-5+2 x_{2}+3 x_{4}=-5+2 s+3 t$
Thus $x_{1}=2 s+3 t-5, x_{2}=s, x_{3}=-3 t+2, x_{4}=t$
is the solution, for s and t any real numbers.
31. $2 R_{2} \rightarrow R_{2}$ means multiply Row 2 by 2 .
$\left[\begin{array}{rr|r}1 & -3 & 2 \\ 8 & -12 & -16\end{array}\right]$
33. $(-4) R_{1}+R_{2} \rightarrow R_{2}$ means replace Row 2 by itself plus -4 times Row 1.

$$
\left[\begin{array}{l}
64 A 74 \\
{\left[\begin{array}{rr|r}
1 & -3 & 2 \\
4 & -6 & -8
\end{array}\right]} \\
-4
\end{array} 12 \begin{array}{lr}
6
\end{array} \rightarrow\left[\begin{array}{rr|r}
1 & -3 & 2 \\
0 & 6 & -16
\end{array}\right]\right.
$$

37. $(-1) R_{1}+R_{2} \rightarrow R_{2}$ means replace Row 2 by itself plus -1 times Row 1.

$$
\rightarrow \begin{aligned}
& 647 \\
& {\left[\begin{array}{rr|r}
1 & -3 & 2 \\
4 & -6 & -8
\end{array}\right]} \\
& -1
\end{aligned} \begin{array}{ll}
4 & -2
\end{array} \rightarrow\left[\begin{array}{rr|r}
1 & -3 & 2 \\
3 & -3 & -10
\end{array}\right]
$$

27. $R_{1} \leftrightarrow R_{2}$ means interchange Rows 1 and 2 .

$$
\left[\begin{array}{rr|r}
4 & -6 & -8 \\
1 & -3 & 2
\end{array}\right]
$$

29. $-4 R_{1} \rightarrow R_{1}$ means multiply Row 1 by -4 .

$$
\left[\begin{array}{rr|r}
-4 & 12 & -8 \\
4 & -6 & -8
\end{array}\right]
$$

35. $(-2) R_{1}+R_{2} \rightarrow R_{2}$ means replace Row 2 by itself plus -2 times Row 1 .

$$
\begin{aligned}
& 6447 \\
& {\left[\begin{array}{rr|r}
1 & -3 & 2 \\
4 & -6 & -8
\end{array}\right]} \\
& -2
\end{aligned} \rightarrow\left[\begin{array}{rr|r}
1 & -3 & 2 \\
2 & 0 & -12
\end{array}\right]
$$

Need 0's here
$\sim\left[\begin{array}{rrr|r}1 & 0 & 2 & -\frac{5}{3} \\ 0 & 1 & -2 & \frac{1}{3} \\ 0 & 0 & 0 & 0\end{array}\right]$
47. $\begin{aligned} & {\left[\begin{array}{rr|r}1 & 2 & 4 \\ 2 & 4 & -8\end{array}\right](-2) R_{1}+R_{2} \rightarrow R_{2}} \\ & \uparrow \\ & \text { Need a } 0 \text { here } \\ & -2-4\end{aligned}$
$\sim\left[\begin{array}{rr|r}1 & 2 & 4 \\ 0 & 0 & -16\end{array}\right]$
This matrix corresponds to the system
$x_{1}+2 x_{2}=4$
$0 x_{1}+0 x_{2}=-16$
This system has no solution.

51. | $\left[\begin{array}{rrrr}2 & 4 & -10 & -2 \\ 3 & 9 & -21 & 0 \\ 1 & 5 & -12 & 1\end{array}\right] R_{1} \leftrightarrow R_{3}, ~$ |
| :---: | :---: | :---: | ---: |

$$
{ }^{4} \text { Need a } 1 \text { here }
$$

$$
\sim\left[\begin{array}{rrr|r}
1 & 5 & -12 & 1 \\
3 & 49 & -21 & 0 \\
2 & 4 & -10 & -2
\end{array}\right] \begin{aligned}
& (-3) R_{1}+R_{2} \rightarrow R_{2} \\
& (-2) R_{1}+R_{3} \rightarrow R_{3}
\end{aligned}
$$

Need 0's here

$$
\sim\left[\begin{array}{rrr|r}
1 & 5 & -12 & 1 \\
0 & -6 & 15 & -3 \\
0 & -6 & 14 & -4
\end{array}\right]-\frac{1}{6} R_{2} \rightarrow R_{2}
$$

Need a 1 here
Need a 0 here
\downarrow
$\sim\left[\begin{array}{rr|r}1 & -4 & -2 \\ 0 & 1 & 1\end{array}\right] \quad 4 R_{2}+R_{1} \rightarrow R_{1}$
044
$\sim\left[\begin{array}{rr|r}1 & 0 & 2 \\ 0 & 1 & 1\end{array}\right] \quad$ Therefore $x_{1}=2$ and $x_{2}=1$
49. $\begin{aligned} & {\left[\begin{array}{rr|r}3 & -6 & -9 \\ -2 & 4 & 6\end{array}\right]} \\ & \text { Need a } 1 \text { here }\end{aligned}$ 龺 $R_{1} \rightarrow R_{1}$
N

$$
\begin{aligned}
& \sim\left[\begin{array}{rr|r}
1 & -2 & -3 \\
-2 & 4 & 6
\end{array}\right]-2 R_{1}+R_{2} \rightarrow R_{2} \\
& \uparrow \\
& \text { Need a } 0 \text { here } \\
& 2-4-6 \\
& \sim\left[\begin{array}{rr|r}
1 & -2 & -3 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

This matrix corresponds to the system $x_{1}-2 x_{2}=-3$
$0 x_{1}+0 x_{2}=0$
Thus $x_{1}=2 x_{2}-3$.
Hence there are infinitely many solutions: for any real number $s, x_{2}=s, x_{1}=2 s-3$ is a solution.

Need a 1 here
$\sim\left[\begin{array}{rrr|r}1 & 5 & -12 & 1 \\ 0 & 1 & -\frac{5}{2} & \frac{1}{2} \\ 0 & -6 & 14 & -4\end{array}\right] \begin{aligned} & (-5) R_{2}+R_{1} \rightarrow R_{1} \\ & 6 R_{2}+R_{3} \rightarrow R_{3}\end{aligned}$
Need 0's here
53. $\left[\begin{array}{rrr|r}3 & 8 & -1 & -18 \\ 2 & 1 & 5 & 8 \\ 2 & 4 & 2 & -4\end{array}\right] \begin{aligned} & \frac{1}{2} R_{3} \rightarrow R_{3} \\ & R_{3} \leftrightarrow R_{1}\end{aligned}$

Need a 1 here

$$
\sim\left[\begin{array}{rrr|r}
1 & 2 & 1 & -2 \\
2 & 1 & 5 & 8 \\
3 & \nmid 8 & -1 & -18
\end{array}\right] \begin{aligned}
& (-2) R_{1}+R_{2} \rightarrow R_{2} \\
& (-3) R_{1}+R_{3} \rightarrow R_{3}
\end{aligned}
$$

Need 0's here

$$
\sim\left[\begin{array}{rrr|r}
1 & 2 & 1 & -2 \\
0 & -3 & 3 & 12 \\
0 & \jmath_{2} & -4 & -12
\end{array}\right]-\frac{1}{3} R_{2} \rightarrow R_{2}
$$

Need a 1 here

$$
\begin{aligned}
& \text { 55. } \left.\begin{array}{rrr|r}
2 & -1 & -3 & 8 \\
1 & -2 & 0 & 7
\end{array}\right] R_{1} \leftrightarrow R_{2} \\
& \sim\left[\begin{array}{rrr|r}
1 & -2 & 0 & 7 \\
2 & -1 & -3 & 8
\end{array}\right](-2) R_{1}+R_{2} \rightarrow R_{2} \\
& \sim\left[\begin{array}{rrr|r}
1 & -2 & 0 & 7 \\
0 & 3 & -3 & -6
\end{array}\right] \frac{1}{3} R_{2} \rightarrow R_{2} \\
& \sim\left[\begin{array}{rrr|r}
1 & -2 & 0 & 7 \\
0 & 1 & -1 & -2
\end{array}\right] 2 R_{2}+R_{1} \rightarrow R_{1} \sim\left[\begin{array}{rrr|r}
1 & 0 & -2 & 3 \\
0 & 1 & -1 & -2
\end{array}\right] \\
& \text { Let } x_{3}=t . \text { Then } \\
& x_{2}-x_{3}=-2 \\
& x_{2}= \\
& x_{1}-2=t-2 \\
& x_{1}-2 x_{3}=3
\end{aligned}
$$

$\sim\left[\begin{array}{rrr|r}1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1\end{array}\right]$
Therefore $x_{1}=-2, x_{2}=3$, and $x_{3}=1$.
$\sim\left[\begin{array}{rrr|r}1 \\ 0 & 2 & 1 & -2 \\ 0 & 1 & -1 & -4 \\ 0 & 2 & -4 & -12\end{array}\right] \begin{aligned} & (-2) R_{2}+R_{1} \rightarrow R_{1} \\ & (-2) R_{2}+R_{3} \rightarrow R_{3}\end{aligned}$
Need 0's here
$\sim\left[\begin{array}{rrr|r}1 & 0 & 3 & 6 \\ 0 & 1 & -1 & -4 \\ 0 & 0 & -2 & -4\end{array}\right]-\frac{1}{2} R_{3} \rightarrow R_{3}$
Need a 1 here
$\sim\left[\begin{array}{rr|r|r}1 & 0 & P^{3} & 6 \\ 0 & 1 & -1 & -4 \\ 0 & 0 & 1 & 2\end{array}\right] \begin{aligned} & (-3) R_{3}+R_{1} \rightarrow R_{1} \\ & R_{3}+R_{2} \rightarrow R_{2}\end{aligned}$
Need 0's here
$\left[\begin{array}{rrr|r}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2\end{array}\right] \quad$ Therefore $x_{1}=0, x_{2}=-2$, and $x_{3}=2$.
57. $\left[\begin{array}{rr|r}2 & -1 & 0 \\ 3 & 2 & 7 \\ 1 & -1 & -1\end{array}\right] R_{1} \leftrightarrow R_{3}$

$$
\sim\left[\begin{array}{rr|r}
1 & -1 & -1 \\
3 & 2 & 7 \\
2 & -1 & 0
\end{array}\right] \begin{aligned}
& (-3) R_{1}+R_{2} \rightarrow R_{2} \\
& (-2) R_{1}+R_{3} \rightarrow R_{3}
\end{aligned}
$$

$$
\sim\left[\begin{array}{rr|r}
1 & -1 & -1 \\
0 & 5 & 10 \\
0 & 1 & 2
\end{array}\right] R_{2} \leftrightarrow R_{3}
$$

$$
x_{1}=2 x_{3}+3=2 t+3
$$

Solution: $x_{1}=2 t+3, x_{2}=t-2, x_{3}=t, t$ any real number.
59. $\left[\begin{array}{rrr|r}3 & -4 & -1 & 1 \\ 2 & -3 & 1 & 1 \\ 1 & -2 & 3 & 2\end{array}\right] R_{1} \leftrightarrow R_{3}$

$$
\sim\left[\begin{array}{rrr|r}
1 & -2 & 3 & 2 \\
2 & -3 & 1 & 1 \\
3 & -4 & -1 & 1
\end{array}\right] \begin{aligned}
& (-2) R_{1}+R_{2} \rightarrow R_{2} \\
& (-3) R_{1}+R_{3} \rightarrow R_{3}
\end{aligned}
$$

$$
\sim\left[\begin{array}{rr|r}
1 & -1 & -1 \\
0 & 1 & 2 \\
0 & 5 & 10
\end{array}\right] \begin{aligned}
& R_{2}+R_{1} \rightarrow R_{1} \\
& (-5) R_{2}+R_{3} \rightarrow R_{3}
\end{aligned} \sim\left[\begin{array}{ll|r}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore $x_{1}=1$ and $x_{2}=2$.
61. $\left[\begin{array}{rrr|r}2 & -2 & -4 & -2 \\ -3 & 3 & 6 & 3\end{array}\right] \begin{aligned} & \frac{1}{2} R_{1} \rightarrow R_{1} \\ & \frac{1}{3} R_{2} \rightarrow R_{2}\end{aligned}$
$\sim\left[\begin{array}{rrr|r}1 & -1 & -2 & -1 \\ -1 & 1 & 2 & 1\end{array}\right] R_{1}+R_{2} \rightarrow R_{2}$
$\sim\left[\begin{array}{rrr|r}1 & -1 & -2 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$

$$
\sim\left[\begin{array}{rrr|r}
1 & -2 & 3 & 2 \\
0 & 1 & -5 & -3 \\
0 & 2 & -10 & -5
\end{array}\right](-2) R_{2}+R_{3} \rightarrow R_{3}
$$

Let $x_{3}=t, x_{2}=s$. Then

$$
\begin{aligned}
x_{1}-x_{2}-2 x_{3} & =-1 \\
x_{1} & =x_{2}+2 x_{3}-1 \\
& =s+2 t-1
\end{aligned}
$$

$$
\sim\left[\begin{array}{rrr|r}
1 & -2 & 3 & 2 \\
0 & 1 & -5 & -3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Solution: $x_{1}=s+2 t-1, x_{2}=s, x_{3}=t, s$ and t any real numbers.

Since the last row corresponds to the equation $0 x_{1}+0 x_{2}+0 x_{3}=1$, there is no solution.
63. $\left[\begin{array}{rrr|r}2 & -5 & -3 & 7 \\ -4 & 10 & 2 & 6 \\ 6 & -15 & -1 & -19\end{array}\right] \begin{aligned} & \\ & 2 R_{1}+R_{2} \rightarrow R_{2} \\ & (-3) R_{1}+R_{3} \rightarrow R_{3}\end{aligned}$

$$
\sim\left[\begin{array}{rrr|r}
2 & -5 & -3 & 7 \\
0 & 0 & -4 & 20 \\
0 & 0 & 8 & -40
\end{array}\right] \begin{aligned}
& \frac{1}{2} R_{1} \rightarrow R_{1} \\
& -\frac{1}{4} R_{2} \rightarrow R_{2}
\end{aligned}
$$

$$
\sim\left[\begin{array}{ccc|c}
1 & -2.5 & -1.5 & 3.5 \\
0 & 0 & 1 & -5 \\
0 & 0 & 8 & -40
\end{array}\right] \begin{aligned}
& 1.5 R_{2}+R_{1} \rightarrow R_{1} \\
& (-8) R_{2}+R_{3} \rightarrow R_{3}
\end{aligned}
$$

$$
\sim\left[\begin{array}{ccc|r}
1 & -2.5 & 0 & -4 \\
0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

65. $\quad\left[\begin{array}{rrrr|r}1 & 2 & -4 & -1 & 7 \\ 2 & 5 & -9 & -4 & 16 \\ 1 & 5 & -7 & -7 & 13\end{array}\right] \begin{aligned} & (-2) R_{1}+R_{2} \rightarrow R_{2} \\ & (-1) R_{1}+R_{3} \rightarrow R_{3}\end{aligned}$
$\sim\left[\begin{array}{llll|l}1 & 2 & -4 & -1 & 7 \\ 0 & 1 & -1 & -2 & 2 \\ 0 & 3 & -3 & -6 & 6\end{array}\right] \begin{aligned} & (-2) R_{2}+R_{1} \rightarrow R_{1} \\ & (-3) R_{2}+R_{3} \rightarrow R_{3}\end{aligned}$
Let $\begin{array}{r}x_{4}=t, x_{3}=s . \text { Then } \\ x_{2}-x_{3}-2 x_{4}=2\end{array}$

$$
\begin{aligned}
x_{2} & =s+2 t+2 \\
x_{1}-2 x_{3}+3 x_{4} & =3 \\
x_{1} & =2 s-3 t+3
\end{aligned}
$$

Solution: $x_{1}=2 s-3 t+3, x_{2}=s+2 t+2, x_{3}=s, x_{4}=t$,
$\sim\left[\begin{array}{rrrr|r}1 & 0 & -2 & 3 & 3 \\ 0 & 1 & -1 & -2 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Let $x_{2}=t$. Then $x_{3}=-5$ and

$$
\begin{aligned}
x_{1}-2.5 x_{2} & =-4 \\
x_{1} & =2.5 x_{2}-4 \\
x_{1} & =2.5 t-4
\end{aligned}
$$

Solution: $x_{1}=2.5 t-4, x_{2}=t, x_{3}=-5, t$ any real number. s and t any real numbers.
67. $\left[\begin{array}{rrrr|r}1 & -1 & 3 & -2 & 1 \\ -2 & 4 & -3 & 1 & 0.5 \\ 3 & -1 & 10 & -4 & 2.9 \\ 4 & -3 & 8 & -2 & 0.6\end{array}\right] \begin{aligned} & 2 R_{1}+R_{2} \rightarrow R_{2} \\ & (-3) R_{1}+R_{3} \rightarrow R_{3} \\ & (-4) R_{1}+R_{4} \rightarrow R_{4}\end{aligned} \sim\left[\begin{array}{rrrr|r}1 & -1 & 3 & -2 & 1 \\ 0 & 2 & 3 & -3 & 2.5 \\ 0 & 2 & 1 & 2 & -0.1 \\ 0 & 1 & -4 & 6 & -3.4\end{array}\right] R_{4} \leftrightarrow R_{2}$
$\sim\left[\begin{array}{rrrr|r}1 & -1 & 3 & -2 & 1 \\ 0 & 1 & -4 & 6 & -3.4 \\ 0 & 2 & 1 & 2 & -0.1 \\ 0 & 2 & 3 & -3 & 2.5\end{array}\right] \begin{aligned} & R_{2}+R_{1} \rightarrow R_{1} \\ & (-2) R_{2}+R_{3} \rightarrow R_{3} \\ & (-2) R_{2}+R_{4} \rightarrow R_{4}\end{aligned} \sim\left[\begin{array}{rrrr|r}1 & 0 & -1 & 4 & -2.4 \\ 0 & 1 & -4 & 6 & -3.4 \\ 0 & 0 & 9 & -10 & 6.7 \\ 0 & 0 & 11 & -15 & 9.3\end{array}\right](-1) R_{4}+R_{3} \rightarrow R_{3}$
$\sim\left[\begin{array}{rrrr|r}1 & 0 & -1 & 4 & -2.4 \\ 0 & 1 & -4 & 6 & -3.4 \\ 0 & 0 & -2 & 5 & -2.6 \\ 0 & 0 & 11 & -15 & 9.3\end{array}\right]-\frac{1}{2} R_{3} \leftrightarrow R_{3} \quad \sim\left[\begin{array}{rrcc|r}1 & 0 & -1 & 4 & -2.4 \\ 0 & 1 & -4 & 6 & -3.4 \\ 0 & 0 & 1 & -2.5 & 1.3 \\ 0 & 0 & 11 & -15 & 9.3\end{array}\right] \begin{aligned} & R_{3}+R_{1} \rightarrow R_{1} \\ & 4 R_{3}+R_{2} \rightarrow R_{2} \\ & \\ & (-11) R_{3}+R_{4} \rightarrow R_{4}\end{aligned}$
$\sim\left[\begin{array}{cccc|r}1 & 0 & 0 & 1.5 & -1.1 \\ 0 & 1 & 0 & -4 & 1.8 \\ 0 & 0 & 1 & -2.5 & 1.3 \\ 0 & 0 & 0 & 12.5 & -5\end{array}\right] \quad \sim{ }_{\frac{1}{12.5} R_{4} \rightarrow R_{4}} \quad \sim\left[\begin{array}{lllc|r}1 & 0 & 0 & 1.5 & -1.1 \\ 0 & 1 & 0 & -4 & 1.8 \\ 0 & 0 & 1 & -2.5 & 1.3 \\ 0 & 0 & 0 & 1 & (-1.5) R_{4}+R_{1} \rightarrow R_{1} \\ 4 R_{4}+R_{2} \rightarrow R_{2} \\ 2.5 R_{4}+R_{3} \rightarrow R_{3}\end{array}\right]$
$\sim\left[\begin{array}{llll|r}1 & 0 & 0 & 0 & -0.5 \\ 0 & 1 & 0 & 0 & 0.2 \\ 0 & 0 & 1 & 0 & 0.3 \\ 0 & 0 & 0 & 1 & -0.4\end{array}\right]$
Solution: $x_{1}=-0.5, x_{2}=0.2, x_{3}=0.3, x_{4}=-0.4$
69. $\left[\begin{array}{rrrrr|r}1 & -2 & 1 & 1 & 2 & 2 \\ -2 & 4 & 2 & 2 & -2 & 0 \\ 3 & -6 & 1 & 1 & 5 & 4 \\ -1 & 2 & 3 & 1 & 1 & 3\end{array}\right] \begin{aligned} & 2 R_{1}+R_{2} \rightarrow R_{2} \\ & (-3) R_{1}+R_{3} \rightarrow R_{3} \\ & R_{1}+R_{4} \rightarrow R_{4}\end{aligned} \quad \sim\left[\begin{array}{rrrrr|r}1 & -2 & 1 & 1 & 2 & 2 \\ 0 & 0 & 4 & 4 & 2 & 4 \\ 0 & 0 & -2 & -2 & -1 & -2 \\ 0 & 0 & 4 & 2 & 3 & 5\end{array}\right] \frac{1}{4} R_{2} \rightarrow R_{2}$

$$
\begin{aligned}
& \sim\left[\begin{array}{rrrrc|r}
1 & -2 & 1 & 1 & 2 & 2 \\
0 & 0 & 1 & 1 & 0.5 & 1 \\
0 & 0 & -2 & -2 & -1 & -2 \\
0 & 0 & 4 & 2 & 3 & 5
\end{array}\right] \begin{array}{l}
(-1) R_{2}+R_{1} \rightarrow R_{1} \\
2 R_{2}+R_{3} \rightarrow R_{3} \\
(-4) R_{2}+R_{4} \rightarrow R_{4}
\end{array} \sim\left[\begin{array}{rrrrl|l}
1 & -2 & 0 & 0 & 1.5 & 1 \\
0 & 0 & 1 & 1 & 0.5 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 1 & 1
\end{array}\right] R_{3} \leftrightarrow R_{4} \\
& \sim\left[\begin{array}{rrrrl|l}
1 & -2 & 0 & 0 & 1.5 & 1 \\
0 & 0 & 1 & 1 & 0.5 & 1 \\
0 & 0 & 0 & -2 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left(-\frac{1}{2}\right) R_{3} \rightarrow R_{3} \quad \sim\left[\begin{array}{rrrlc|c}
1 & -2 & 0 & 0 & 1.5 & 1 \\
0 & 0 & 1 & 1 & 0.5 & 1 \\
0 & 0 & 0 & 1 & -0.5 & -0.5 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right](-1) R_{3}+R_{2} \rightarrow R_{2}
\end{aligned}
$$

$$
\sim\left[\begin{array}{rrrcc|c}
1 & -2 & 0 & 0 & 1.5 & 1 \\
0 & 0 & 1 & 0 & 1 & 1.5 \\
0 & 0 & 0 & 1 & -0.5 & -0.5 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Let $x_{5}=t$. Then

$$
\begin{aligned}
x_{4}-0.5 x_{5} & =-0.5 \\
x_{4} & =0.5 x_{5}-0.5=0.5 t-0.5 \\
x_{3}+x_{5} & =1.5 \\
x_{3} & =-x_{5}+1.5=-t+1.5
\end{aligned}
$$

Let $x_{2}=s$. Then

$$
\begin{aligned}
x_{1}-2 x_{2}+1.5 x_{5} & =1 \\
x_{1} & =2 x_{2}-1.5 x_{5}+1=2 s-1.5 t+1
\end{aligned}
$$

Solution: $x_{1}=2 s-1.5 t+1, x_{2}=s, x_{3}=-t+1.5, x_{4}=0.5 t-0.5, x_{5}=t$, s and t any real numbers.
71. (A) The reduced form matrix will have the form $\left[\begin{array}{lll|l}1 & a & b & c \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Thus, the system has been shown equivalent to

$$
\begin{aligned}
x_{1}+a x_{2}+b x_{3} & =c \\
0 & =0 \\
0 & =0
\end{aligned}
$$

The system is dependent, and x_{2} and x_{3} may assume any real values. Thus, there are two parameters in the solution.
(B) The reduced form matrix will have the form $\left[\begin{array}{lll|l}1 & 0 & a & b \\ 0 & 1 & c & d \\ 0 & 0 & 0 & 0\end{array}\right]$

Thus, the system has been shown equivalent to

$$
\begin{aligned}
x_{1}+a x_{3} & =b \\
x_{2}+c x_{3} & =d \\
0 & =0
\end{aligned}
$$

The system is dependent, with a solution for any real value of x_{3}. Thus, there is one parameter in the solution.
(C) The reduced form matrix will have the form $\left[\begin{array}{lll|l}1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c\end{array}\right]$

Thus, there is only one solution, $x_{1}=a, x_{2}=b, x_{3}=c$, and the system is independent.
(D) This is impossible; there are only 3 equations.
73. Let
$x=$ the number of CD's
$y=$ the number of DVD's
$z=$ the number of books
Then

$$
\begin{aligned}
x+y+z & =13 & & \text { total items } \\
10 x+12 y+7 z & =129 & & \text { total amount spent }
\end{aligned}
$$

If we multiply the first equation by -10 and add, we can eliminate x.

$$
\begin{aligned}
-10 x-10 y-10 z & =-130 \\
10 x+12 y+7 z & =129 \\
\hline 2 y-3 z & =-1
\end{aligned}
$$

$$
\begin{aligned}
2 y & =3 z-1 \\
y & =\frac{3 z-1}{2}
\end{aligned}
$$

Since x, y, and z must be positive integers, a solution is achieved, but only for certain values of z.
If $z=1, y=\frac{3 \cdot 1-1}{2}=1, x+y+z=13$, hence $x+1+1=13, x=11$
11 CD's, 1 DVD, and 1 book
If $z=3, y=\frac{3 \cdot 3-1}{2}=4, x+y+z=13$, hence $x+4+3=13, x=6$
6 CD's, 4 DVDs, and 3 books
If $z=5, y=\frac{3 \cdot 5-1}{2}=7, x+y+z=13$, hence $x+7+5=13, x=1$
$1 \mathrm{CD}, 7$ DVDs, and 5 books
No other solutions are possible.
75. Let $x=$ amount of 20% solution
$y=$ amount of 80% solution
Summarize the given information in a table:

| | 20% solution | | 80% solution |
| :--- | :---: | :---: | :---: | 62\% solution

Form equations from the information:

$\binom{$ Amount of }{20% solution }	$+\binom{$ Amount of }{80% solution }	$=\binom{$ Amount of }{62% solution }
x	$+\left(\begin{array}{c}y=\end{array}\right.$	
$\binom{$ Amount of acid }{ in 20% solution }	$+\binom{$ Amount of acid }{ in 80% solution }	$=\binom{$ Amount of acid }{ in 62% solution }
$0.2 x$	$+(0.8 y$	$=$

Solve this system using elimination by addition.

$$
\begin{aligned}
-0.2 x-0.2 y & =-20 \\
0.2 x+0.8 y & =62 \\
\hline 0.6 y & =42 \\
y & =70 \\
x+70 & =100 \\
x & =30
\end{aligned}
$$

30 liters of 20% solution and 70 liters of 80% solution.
77. If the curve passes through a point, the coordinates of the point satisfy the equation of the curve. Hence,
$3=a+b(-2)+c(-2)^{2}$
$2=a+b(-1)+c(-1)^{2}$
$6=a+b(1)+c(1)^{2}$
After simplification, we have
$a-2 b+4 c=3$
$a-b+c=2$
$a+b+c=6$
We write the augmented matrix and solve by Gauss-Jordan elimination.
$\left[\begin{array}{rrr|r}1 & -2 & 4 & 3 \\ 1 & -1 & 1 & 2 \\ 1 & 1 & 1 & 6\end{array}\right] \underset{(-1) R_{1}+R_{2} \rightarrow R_{2}}{(-1) R_{1}+R_{3} \rightarrow R_{3}} \sim\left[\begin{array}{rrr|r}1 & -2 & 4 & 3 \\ 0 & 1 & -3 & -1 \\ 0 & 3 & -3 & 3\end{array}\right] \underset{(-3) R_{2}+R_{3} \rightarrow R_{3}}{\sim} \sim\left[\begin{array}{rrr|r}1 & 0 & -2 & 1 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 6 & 6\end{array}\right] \underset{\frac{1}{6} R_{3} \rightarrow R_{3}}{ }$
$\sim\left[\begin{array}{rrr|r}1 & 0 & -2 & 1 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 1 & 1\end{array}\right] \begin{aligned} & 2 R_{3}+R_{1} \rightarrow R_{1} \\ & 3 R_{3}+R_{2} \rightarrow R_{2}\end{aligned} \sim\left[\begin{array}{lll|r}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1\end{array}\right]$ Thus $a=3, b=2, c=1$.
79. Let $x_{1}=$ number of one-person boats
$x_{2}=$ number of two-person boats
$x_{3}=$ number of four-person boats
We have
$0.5 x_{1}+1.0 x_{2}+1.5 x_{3}=380$ cutting department
$0.6 x_{1}+0.9 x_{2}+1.2 x_{3}=330$ assembly department
$0.2 x_{1}+0.3 x_{2}+0.5 x_{3}=120$ packing department

Common Error:

The facts in this problem do not justify the equation
$0.5 x_{1}+0.6 x_{2}+0.2 x_{3}=380$
Clearing of decimals for convenience:

$$
x_{1}+2 x_{2}+3 x_{3}=760
$$

$6 x_{1}+9 x_{2}+12 x_{3}=3300$
$2 x_{1}+3 x_{2}+5 x_{3}=1200$
We write the augmented matrix and solve by Gauss-Jordan elimination:
$\left.\left[\begin{array}{rrr|r}1 & 2 & 3 & 760 \\ 6 & 9 & 12 & 3300 \\ 2 & 3 & 5 & 1200\end{array}\right] \begin{array}{l}(-6) R_{1}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{rrr|r}1 & 2 & 3 & 760 \\ 0 & -3 & -6 & -1260 \\ 0 & -1 & -1 & -320\end{array}\right]-\frac{1}{3} R_{2} \rightarrow R_{3} \rightarrow R_{3}\end{array}\right]$
$\sim\left[\begin{array}{rrr|r}1 & 2 & 3 & 760 \\ 0 & 1 & 2 & 420 \\ 0 & -1 & -1 & -320\end{array}\right] \begin{aligned} & (-2) R_{2}+R_{1} \rightarrow R_{1} \\ & R_{2}+R_{3} \rightarrow R_{3}\end{aligned} \sim\left[\begin{array}{rrr|r}1 & 0 & -1 & -80 \\ 0 & 1 & 2 & 420 \\ 0 & 0 & 1 & 100\end{array}\right] \begin{aligned} & R_{3}+R_{1} \rightarrow R_{1} \\ & (-2) R_{3}+R_{2} \rightarrow R_{2}\end{aligned}$

$$
\left[\begin{array}{rrr|r}
1 & 0 & 0 & 20 \\
0 & 1 & 0 & 220 \\
0 & 0 & 1 & 100
\end{array}\right]
$$

Therefore
$x_{1}=20$ one-person boats
$x_{2}=220$ two - person boats
$x_{3}=100$ four-person boats
81. This assumption discards the third equation. The system, cleared of decimals, reads

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =760 \\
6 x_{1}+9 x_{2}+12 x_{3} & =3300
\end{aligned}
$$

The augmented matrix becomes $\left[\begin{array}{rrr|r}1 & 2 & 3 & 760 \\ 6 & 9 & 12 & 3300\end{array}\right]$
We solve by Gauss-Jordan elimination. We start by introducing a 0 into the lower left corner using $(-6) R_{1}+R_{2}$ as in the previous problem:

$$
\sim\left[\begin{array}{rrr|r}
1 & 2 & 3 & 760 \\
0 & -3 & -6 & -1260
\end{array}\right]-\frac{1}{3} R_{2} \rightarrow R_{2} \sim\left[\begin{array}{rrr|r}
1 & 2 & 3 & 760 \\
0 & 1 & 2 & 420
\end{array}\right](-2) R_{2}+R_{1} \rightarrow R_{1} \sim\left[\begin{array}{rrr|r}
1 & 0 & -1 & -80 \\
0 & 1 & 2 & 420
\end{array}\right]
$$

This augmented matrix is in reduced form. It corresponds to the system:

$$
\begin{gathered}
x_{1}-x_{3}=-80 \\
x_{2}+2 x_{3}=420 \\
\text { Let } x_{3}=t . \text { Then } \\
x_{2}=-2 x_{3}+420 \\
=-2 t+420 \\
x_{1}=x_{3}-80
\end{gathered}
$$

$$
=t-80
$$

A solution is achieved, not for every real value of t, but for integer values of t that give rise to non-negative x_{1}, x_{2}, x_{3}.
$x_{1} \geq 0$ means $t-80 \geq 0$ or $t \geq 80$
$x_{2} \geq 0$ means $-2 t+420 \geq 0$ or $210 \geq t$
Thus we have the solution
$x_{1}=(t-80)$ one-person boats
$x_{2}=(-2 t+420)$ two-person boats
$x_{3}=t$ four-person boats
$80 \leq t \leq 210, t$ an integer
83. In this case we have $x_{3}=0$ from the beginning. The three equations of problem 79 , cleared of decimals, read:

$$
\begin{aligned}
x_{1}+2 x_{2} & =760 \\
6 x_{1}+9 x_{2} & =3300 \\
2 x_{1}+3 x_{2} & =1200
\end{aligned}
$$

The augmented matrix becomes: $\left[\begin{array}{ll|r}1 & 2 & 760 \\ 6 & 9 & 3300 \\ 2 & 3 & 1200\end{array}\right]$
Notice that the row operation $(-3) R_{3}+R_{2} \rightarrow R_{2}$
transforms this into the equivalent augmented matrix: $\left[\begin{array}{rr|r}1 & 2 & 760 \\ 0 & 0 & -300 \\ 2 & 3 & 1200\end{array}\right]$
Therefore, since the second row corresponds to the equation $0 x_{1}+0 x_{2}=-300$ there is no solution.
No production schedule will use all the work-hours in all departments.
85. Let $x_{1}=$ number of ounces of food A.
$x_{2}=$ number of ounces of food B.
$x_{3}=$ number of ounces of food C.
Then

$$
\begin{aligned}
& 30 x_{1}+10 x_{2}+20 x_{3}=340 \text { (calcium) } \\
& 10 x_{1}+10 x_{2}+20 x_{3}=180 \text { (iron) } \\
& 10 x_{1}+30 x_{2}+20 x_{3}=220(\text { vitamin A) }
\end{aligned}
$$

or

$$
\begin{aligned}
3 x_{1}+x_{2}+2 x_{3} & =34 \\
x_{1}+x_{2}+2 x_{3} & =18 \\
x_{1}+3 x_{2}+2 x_{3} & =22
\end{aligned}
$$

is the system to be solved. We form the augmented matrix and solve by Gauss-Jordan elimination.

$$
\left[\begin{array}{lll|l}
3 & 1 & 2 & 34 \\
1 & 1 & 2 & 18 \\
1 & 3 & 2 & 22
\end{array}\right] R_{1} \leftrightarrow R_{2} \sim\left[\begin{array}{lll|l}
1 & 1 & 2 & 18 \\
3 & 1 & 2 & 34 \\
1 & 3 & 2 & 22
\end{array}\right] \begin{gathered}
\substack{(-3) R_{1}+R_{2} \rightarrow R_{2} \\
(-1) R_{1}+R_{3} \rightarrow R_{3}}
\end{gathered}\left[\begin{array}{rrr|r}
1 & 1 & 2 & 18 \\
0 & -2 & -4 & -20 \\
0 & 2 & 0 & 4
\end{array}\right]-\frac{1}{2} R_{2} \rightarrow R_{2}
$$

$\sim\left[\begin{array}{lll|r}1 & 1 & 2 & 18 \\ 0 & 1 & 2 & 10 \\ 0 & 2 & 0 & 4\end{array}\right] \underset{(-2) R_{2}+R_{3} \rightarrow R_{3}}{\sim} \sim R_{1} \sim\left[\begin{array}{rrr|r}1 & 0 & 0 & 8 \\ 0 & 1 & 2 & 10 \\ 0 & 0 & -4 & -16\end{array}\right] \underset{-\frac{1}{4} R_{3} \rightarrow R_{3}}{\sim} \sim\left[\begin{array}{rrr|r}1 & 0 & 0 & 8 \\ 0 & 1 & 2 & 10 \\ 0 & 0 & 1 & 4\end{array}\right](-2) R_{3}+R_{2} \rightarrow R_{2}$
$\sim\left[\begin{array}{lll|l}1 & 0 & 0 & 8 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 4\end{array}\right]$
Thus
$x_{1}=8$ ounces food A
$x_{2}=2$ ounces food B
$x_{3}=4$ ounces food C
87. In this case we have $x_{3}=0$ from the beginning. The three equations of problem 85 become

$$
\begin{aligned}
& 30 x_{1}+10 x_{2}=340 \\
& 10 x_{1}+10 x_{2}=180 \\
& 10 x_{1}+30 x_{2}=220
\end{aligned}
$$

or
$3 x_{1}+x_{2}=34$
$x_{1}+x_{2}=18$
$x_{1}+3 x_{2}=22$
The augmented matrix becomes $\left[\begin{array}{cc|c}3 & 1 & 34 \\ 1 & 1 & 18 \\ 1 & 3 & 22\end{array}\right]$
We solve by Gauss-Jordan elimination, starting by the row operation
$R_{1} \leftrightarrow R_{2}$
$\left[\begin{array}{ll|l}1 & 1 & 18 \\ 3 & 1 & 34 \\ 1 & 3 & 22\end{array}\right] \underset{(-3) R_{1}+R_{2} \rightarrow R_{2}}{(-1) R_{3} \rightarrow R_{3}} \sim\left[\begin{array}{rr|r}1 & 1 & 18 \\ 0 & -2 & -20 \\ 0 & 2 & 4\end{array}\right] \underset{R_{2}+R_{3} \rightarrow R_{3}}{\sim} \sim\left[\begin{array}{rr|r}1 & 1 & 18 \\ 0 & -2 & -20 \\ 0 & 0 & -16\end{array}\right]$
Since the third row corresponds to the equation

$$
0 x_{1}+0 x_{2}=-16
$$

there is no solution.
89. In this case we discard the third equation. The system becomes

$$
\begin{aligned}
& 30 x_{1}+10 x_{2}+20 x_{3}=340 \\
& 10 x_{1}+10 x_{2}+20 x_{3}=180
\end{aligned}
$$

or
$3 x_{1}+x_{2}+2 x_{3}=34$

$$
x_{1}+x_{2}+2 x_{3}=18
$$

The augmented matrix becomes $\left[\begin{array}{lll|l}3 & 1 & 2 & 34 \\ 1 & 1 & 2 & 18\end{array}\right]$
We solve by Gauss-Jordan elimination, starting by the row operation $R_{1} \leftrightarrow R_{2}$.
$\left[\begin{array}{lll|l}1 & 1 & 2 & 18 \\ 3 & 1 & 2 & 34\end{array}\right](-3) R_{1}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{rrr|r}1 & 1 & 2 & 18 \\ 0 & -2 & -4 & -20\end{array}\right]-\frac{1}{2} R_{2} \rightarrow R_{2} \sim\left[\begin{array}{rrr|r}1 & 1 & 2 & 18 \\ 0 & 1 & 2 & 10\end{array}\right](-1) R_{2}+R_{1} \rightarrow R_{1}$ $\sim\left[\begin{array}{rrr|r}1 & 0 & 0 & 8 \\ 0 & 1 & 2 & 10\end{array}\right]$
This augmented matrix is in reduced form. It corresponds to the system

$$
x_{1}=8
$$

$$
\begin{aligned}
x_{2}+2 x_{3} & =10 \\
\text { Let } x_{3} & =t \\
\text { Then } x_{2} & =-2 x_{3}+10 \\
& =-2 t+10
\end{aligned}
$$

A solution is achieved, not for every real value t, but for values of t that give rise to non-negative x_{2}, x_{3}.
$x_{3} \geq 0$ means $t \geq 0$
$x_{2} \geq 0$ means $-2 t+10 \geq 0,5 \geq t$
Thus we have the solution
$x_{1}=8$ ounces food A
$x_{2}=-2 t+10$ ounces food B
$x_{3}=t$ ounces food C
$0 \leq t \leq 5$
91. Let $x_{1}=$ number of hours company A is to be scheduled
$x_{2}=$ number of hours company B is to be scheduled
In x_{1} hours, company A can handle $30 x_{1}$ telephone and $10 x_{1}$ house contacts.
In x_{2} hours, company B can handle $20 x_{2}$ telephone and $20 x_{2}$ house contacts.
We therefore have:

$$
\begin{aligned}
& 30 x_{1}+20 x_{2}=600 \text { telephone contacts } \\
& 10 x_{1}+20 x_{2}=400 \text { house contacts }
\end{aligned}
$$

We form the augmented matrix and solve by Gauss-Jordan elimination.
$\left[\begin{array}{ll|l}30 & 20 & 600 \\ 10 & 20 & 400\end{array}\right] \frac{1}{\frac{1}{10} R_{1} \rightarrow R_{1}} \frac{1}{10} R_{2} \rightarrow R_{2} \sim\left[\begin{array}{ll|l}3 & 2 & 60 \\ 1 & 2 & 40\end{array}\right] R_{1} \leftrightarrow R_{2} \sim\left[\begin{array}{ll|l}1 & 2 & 40 \\ 3 & 2 & 60\end{array}\right](-3) R_{1}+R_{2} \rightarrow R_{2}$
$\sim\left[\begin{array}{rr|r}1 & 2 & 40 \\ 0 & -4 & -60\end{array}\right]-\frac{1}{4} R_{3} \rightarrow R_{3} \sim\left[\begin{array}{rr|r}1 & 2 & 40 \\ 0 & 1 & 15\end{array}\right](-2) R_{2}+R_{1} \rightarrow R_{1}$
$\sim\left[\begin{array}{ll|l}1 & 0 & 10 \\ 0 & 1 & 15\end{array}\right]$
Therefore
$x_{1}=10$ hours company A
$x_{2}=15$ hours company B
93. Let $x=$ base price $y=$ surcharge for each additional pound.
Since a 5-pound package costs the base price plus 4 surcharges, $x+4 y=27.75$
Since a 20 -pound package costs the base price plus 19 surcharges, $x+19 y=64.50$
Solve using elimination by addition.

$$
\begin{aligned}
-x-4 y & =-27.75 \\
x+19 y & =64.50 \\
\hline 15 y & =36.75 \\
y & =2.45 \\
x+4(2.45) & =27.75 \\
x & =17.95
\end{aligned}
$$

The base price is $\$ 17.95$ and the surcharge per pound is $\$ 2.45$.
95. Let $x=$ number of pounds of robust blend $y=$ number of pounds of mild blend
Summarize the given information in a table:

	Robust blend	Mild blend
ozs. of Columbian beans	12	6
ozs. of Brazilian beans	4	10

Form equations from the information:

$\left(\begin{array}{c} \text { pounds of Columbian } \\ \text { beans needed for } \\ \text { robust blend } \end{array}\right)$	$+\left(\begin{array}{c} \text { pounds of Columbian } \\ \text { beans needed for } \\ \text { mild blend } \end{array}\right)$	$=\left(\begin{array}{c} \text { Total } \\ \text { Columbian beans } \\ \text { available } \end{array}\right)$
$\frac{12}{16} x$	$+\quad \frac{6}{16} y$	50(132)
$\left(\begin{array}{c} \text { pounds of Brazilian } \\ \text { beans needed for } \\ \text { robust blend } \end{array}\right)$	$+\left(\begin{array}{c} \text { pounds of Brazilian } \\ \text { beans needed for } \\ \text { mild blend } \end{array}\right)$	$=\left(\begin{array}{c} \text { Total } \\ \text { Brazilian beans } \\ \text { available } \end{array}\right)$
$\frac{4}{16} x$	$+\quad \frac{10}{16} y$	$=40(132)$

Solve using elimination by addition:

$$
\begin{aligned}
\frac{12}{16} x+\frac{6}{16} y & =6,600 \\
-\frac{12}{16} x-\frac{30}{16} y & =-15,840 \\
-\frac{24}{16} y & =-9,240 \\
y & =6,160 \\
\frac{4}{16} x+\frac{10}{16}(6,160) & =40(132) \\
\frac{1}{4} x+3,850 & =5,280 \\
\frac{1}{4} x & =1,430 \\
x & =5,720
\end{aligned}
$$

5,720 pounds of the robust blend and 6,160 pounds of the mild blend.

Section 10-3

1. A and B must be the same size.
2. The number of columns of B must equal the number of rows of A, that is, if B is an $m \times n$ matrix, A must be a $n \times p$ matrix.
3. The negative of an $m \times n$ matrix A is an $m \times n$ matrix $-A$ in which each element is -1 times the corresponding element of A.
4. Multiply each element of the matrix by the number.
5. $B A$ is an $n \times n$ matrix is which the element in row i, column j is the product of the element in row i of B times the element in column j of A.
6. $\left[\begin{array}{rr}5 & -2 \\ 3 & 0\end{array}\right]+\left[\begin{array}{rr}-3 & 7 \\ 1 & -6\end{array}\right]=\left[\begin{array}{ll}5+(-3) & (-2)+7 \\ 3+1 & 0+(-6)\end{array}\right]=\left[\begin{array}{rr}2 & 5 \\ 4 & -6\end{array}\right]$
7. $\left[\begin{array}{rr}4 & 0 \\ -2 & 3 \\ 8 & 1\end{array}\right]+\left[\begin{array}{rr}-1 & 2 \\ 0 & 5 \\ 4 & -6\end{array}\right]=\left[\begin{array}{ll}4+(-1) & 0+2 \\ (-2)+0 & 3+5 \\ 8+4 & 1+(-6)\end{array}\right]=\left[\begin{array}{rr}3 & 2 \\ -2 & 8 \\ 12 & -5\end{array}\right]$
8. These matrices have different sizes, hence the sum is not defined.
9. $\left[\begin{array}{rrr}5 & -1 & 0 \\ 4 & 6 & 3\end{array}\right]-\left[\begin{array}{rrr}2 & 4 & -6 \\ 3 & 5 & -5\end{array}\right]=\left[\begin{array}{rrr}5-2 & (-1)-4 & 0-(-6) \\ 4-3 & 6-5 & 3-(-5)\end{array}\right]=\left[\begin{array}{rrr}3 & -5 & 6 \\ 1 & 1 & 8\end{array}\right]$
10. These matrices have different sizes, hence the difference is not defined.
11. $\left[\begin{array}{rrr}2.4 & -2.8 & 3.9 \\ -1.6 & 0 & 4.2\end{array}\right]-\left[\begin{array}{rrr}7 & -2.2 & -2.2 \\ -3.2 & -3.2 & 1\end{array}\right]=\left[\begin{array}{rrr}2.4-7 & (-2.8)-(-2.2) & (3.9)-(-2.2) \\ (-1.6)-(-3.2) & 0-(-3.2) & 4.2-1\end{array}\right]=\left[\begin{array}{rrr}-4.6 & -0.6 & 6.1 \\ 1.6 & 3.2 & 3.2\end{array}\right]$
12. $\left[\begin{array}{ccc}12 & -16 & 28 \\ -8 & 36 & 20\end{array}\right]$
13. $\left[\begin{array}{ll}5 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 7\end{array}\right]=[5 \cdot 4+3 \cdot 7]=[41]$
14. $\left[\begin{array}{l}-5 \\ -3\end{array}\right]\left[\begin{array}{ll}4 & -2\end{array}\right]=\left[\begin{array}{ll}(-5) 4 & (-5)(-2) \\ (-3) 4 & (-3)(-2)\end{array}\right]=\left[\begin{array}{cc}-20 & 10 \\ -12 & 6\end{array}\right]$
15. $\left[\begin{array}{lll}3 & -2 & -4\end{array}\right]\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]=[3 \cdot 1+(-2) 2+(-4)(-3)]=[11]$
16. $\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]\left[\begin{array}{lll}3 & -2 & -4\end{array}\right]=\left[\begin{array}{ccc}1 \cdot 3 & 1(-2) & 1(-4) \\ 2 \cdot 3 & 2(-2) & 2(-4) \\ (-3) 3 & (-3)(-2) & (-3)(-4)\end{array}\right]=\left[\begin{array}{c}3 \\ 6 \\ -9\end{array}\right.$
17. $\left[\begin{array}{ll}5 & 1 \\ 4 & 6\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 3 & 8\end{array}\right]=\left[\begin{array}{cc}5 \cdot 2+1 \cdot 3 & 5 \cdot 0+1 \cdot 8 \\ 4 \cdot 2+6 \cdot 3 & 4 \cdot 0+6 \cdot 8\end{array}\right]=\left[\begin{array}{rr}13 & 8 \\ 26 & 48\end{array}\right]$
18. $\left[\begin{array}{rr}8 & -3 \\ -5 & 3\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 6\end{array}\right]=\left[\begin{array}{ll}8 \cdot 2+(-3) 0 & 8 \cdot 0+(-3) 6 \\ (-5) 2+3 \cdot 0 & (-5) 0+3 \cdot 6\end{array}\right]=\left[\begin{array}{rr}16 & -18 \\ -10 & 18\end{array}\right]$
19. $\quad C$ has 3 columns. A has 2 rows. Therefore, $C A$ is not defined.
20. $B A=\left[\begin{array}{cc}-3 & 1 \\ 2 & 5\end{array}\right]\left[\begin{array}{ccc}2 & -1 & 3 \\ 0 & 4 & -2\end{array}\right]=\left[\begin{array}{ccc}(-3) 2+1 \cdot 0 & (-3)(-1)+1 \cdot 4 & (-3) 3+1(-2) \\ 2 \cdot 2+5 \cdot 0 & 2(-1)+5 \cdot 4 & 2 \cdot 3+5(-2)\end{array}\right]=\left[\begin{array}{ccc}-6 & 7 & -11 \\ 4 & 18 & -4\end{array}\right]$
21. $\quad C^{2}=\left[\begin{array}{ccc}-1 & 0 & 2 \\ 4 & -3 & 1 \\ -2 & 3 & 5\end{array}\right]\left[\begin{array}{ccc}-1 & 0 & 2 \\ 4 & -3 & 1 \\ -2 & 3 & 5\end{array}\right]=\left[\begin{array}{ccc}(-1)(-1)+0 \cdot 4+2(-2) & (-1) 0+0(-3)+2 \cdot 3 & (-1) 2+0 \cdot 1+2 \cdot 5 \\ 4(-1)+(-3) 4+1(-2) & 4 \cdot 0+(-3)(-3)+1 \cdot 3 & 4 \cdot 2+(-3) 1+1 \cdot 5 \\ (-2)(-1)+3 \cdot 4+5(-2) & (-2) 0+3(-3)+5 \cdot 3 & (-2) 2+3 \cdot 1+5 \cdot 5\end{array}\right]$

$$
=\left[\begin{array}{ccc}
-3 & 6 & 8 \\
-18 & 12 & 10 \\
4 & 6 & 24
\end{array}\right]
$$

45. $\quad D A=\left[\begin{array}{cc}3 & -2 \\ 0 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{ccc}2 & -1 & 3 \\ 0 & 4 & -2\end{array}\right]=\left[\begin{array}{ccc}3 \cdot 2+(-2) 0 & 3(-1)+(-2) 4 & 3 \cdot 3+(-2)(-2) \\ 0 \cdot 2+(-1) 0 & 0(-1)+(-1) 4 & 0 \cdot 3+(-1)(-2) \\ 1 \cdot 2+2 \cdot 0 & 1(-1)+2 \cdot 4 & 1 \cdot 3+2(-2)\end{array}\right]=\left[\begin{array}{ccc}6 & -11 & 13 \\ 0 & -4 & 2 \\ 2 & 7 & -1\end{array}\right]$

$$
C+D A=\left[\begin{array}{ccc}
-1 & 0 & 2 \\
4 & -3 & 1 \\
-2 & 3 & 5
\end{array}\right]+\left[\begin{array}{ccc}
6 & -11 & 13 \\
0 & -4 & 2 \\
2 & 7 & -1
\end{array}\right]=\left[\begin{array}{ccc}
5 & -11 & 15 \\
4 & -7 & 3 \\
0 & 10 & 4
\end{array}\right]
$$

47. $0.2 C D=0.2\left[\begin{array}{ccc}-1 & 0 & 2 \\ 4 & -3 & 1 \\ -2 & 3 & 5\end{array}\right]\left[\begin{array}{cc}3 & -2 \\ 0 & -1 \\ 1 & 2\end{array}\right]=0.2\left[\begin{array}{cc}(-1) 3+0 \cdot 0+2 \cdot 1 & (-1)(-2)+0(-1)+2 \cdot 2 \\ 4 \cdot 3+(-3) 0+1 \cdot 1 & 4(-2)+(-3)(-1)+1 \cdot 2 \\ (-2) 3+3 \cdot 0+5 \cdot 1 & (-2)(-2)+3(-1)+5 \cdot 2\end{array}\right]$

$$
=0.2\left[\begin{array}{cc}
-1 & 6 \\
13 & -3 \\
-1 & 11
\end{array}\right]=\left[\begin{array}{cc}
-0.2 & 1.2 \\
2.6 & -0.6 \\
-0.2 & 2.2
\end{array}\right]
$$

49. $\quad D B=\left[\begin{array}{cc}3 & -2 \\ 0 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}-3 & 1 \\ 2 & 5\end{array}\right]=\left[\begin{array}{cc}3(-3)+(-2) 2 & 3 \cdot 1+(-2) 5 \\ 0(-3)+(-1) 2 & 0 \cdot 1+(-1) 5 \\ 1(-3)+2 \cdot 2 & 1 \cdot 1+2 \cdot 5\end{array}\right]=\left[\begin{array}{cc}-13 & -7 \\ -2 & -5 \\ 1 & 11\end{array}\right]$
$C D=\left[\begin{array}{cc}-1 & 6 \\ 13 & -3 \\ -1 & 11\end{array}\right]$ (see problem 47)
Thus, $2 D B+5 C D=2\left[\begin{array}{cc}-13 & -7 \\ -2 & -5 \\ 1 & 11\end{array}\right]+5\left[\begin{array}{cc}-1 & 6 \\ 13 & -3 \\ -1 & 11\end{array}\right]=\left[\begin{array}{cc}-26 & -14 \\ -4 & -10 \\ 2 & 22\end{array}\right]+\left[\begin{array}{cc}-5 & 30 \\ 65 & -15 \\ -5 & 55\end{array}\right]=\left[\begin{array}{cc}-31 & 16 \\ 61 & -25 \\ -3 & 77\end{array}\right]$
50. (-1) $A C$ is a matrix of size $2 \times 3.3 D B$ is a matrix of size 3×2. Hence, $(-1) A C+3 D B$ is not defined.
51. $C D=\left[\begin{array}{cc}-1 & 6 \\ 13 & -3 \\ -1 & 11\end{array}\right]$ (see problem 47)

Hence $C D A=\left[\begin{array}{cc}-1 & 6 \\ 13 & -3 \\ -1 & 11\end{array}\right]\left[\begin{array}{ccc}2 & -1 & 3 \\ 0 & 4 & -2\end{array}\right]$

$$
=\left[\begin{array}{ccc}
(-1) 2+6 \cdot 0 & (-1)(-1)+6 \cdot 4 & (-1) 3+6(-2) \\
13 \cdot 2+(-3) 0 & 13(-1)+(-3) 4 & 13 \cdot 3+(-3)(-2) \\
(-1) 2+11 \cdot 0 & (-1)(-1)+11 \cdot 4 & (-1) 3+11(-2)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 25 & -15 \\
26 & -25 & 45 \\
-2 & 45 & -25
\end{array}\right]
$$

55. $D B=\left[\begin{array}{cc}-13 & -7 \\ -2 & -5 \\ 1 & 11\end{array}\right]$ (see problem 49)

Hence
$D B A=\left[\begin{array}{cc}-13 & -7 \\ -2 & -5 \\ 1 & 11\end{array}\right]\left[\begin{array}{ccc}2 & -1 & 3 \\ 0 & 4 & -2\end{array}\right]=\left[\begin{array}{ccc}(-13) 2+(-7) 0 & (-13)(-1)+(-7) 4 & (-13) 3+(-7)(-2) \\ (-2) 2+(-5) 0 & (-2)(-1)+(-5) 4 & (-2) 3+(-5)(-2) \\ 1 \cdot 2+11 \cdot 0 & 1(-1)+11 \cdot 4 & 1 \cdot 3+11(-2)\end{array}\right]=\left[\begin{array}{rrr}-26 & -15 & -25 \\ -4 & -18 & 4 \\ 2 & 43 & -19\end{array}\right]$
57. Entering matrix B in a graphing calculator, we obtain the results

It appears that $B^{n} \rightarrow$	25 0.75$]$	

We calculate $A B, A B^{2}, A B^{3}, \ldots$ and obtain the results

It appears that $A B^{n} \rightarrow\left[\begin{array}{ll}0.25 & 0.75\end{array}\right]$.
59. $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+\left[\begin{array}{cc}2 & -3 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}a+2 & b-3 \\ c & d+1\end{array}\right]=\left[\begin{array}{ll}1 & -2 \\ 3 & -4\end{array}\right]$
if and only if corresponding elements are equal.
$\begin{array}{rlrlrl}a+2 & =1 & b-3 & =-2 & c & =3 \\ & d+1 & d+4 \\ a & =-1 & b & =1 & c & =3\end{array} r d=-5$
61. $\left[\begin{array}{cc}3 & 0 \\ -7 & -11\end{array}\right]-\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]=\left[\begin{array}{cc}3-w & -x \\ -7-y & -11-z\end{array}\right]=\left[\begin{array}{ll}9 & 1 \\ 4 & 6\end{array}\right]$
if and only if corresponding elements are equal.

$$
\begin{array}{rlrlrl}
3-w & =9 & -x & =1 & -7-y & =4 \\
& =11-z & =6 \\
w & =-6 & x & =-1 & y & =-11
\end{array}
$$

63. Compute the square matrix A :
$A^{2}=\left[\begin{array}{rr}a & b \\ c & -a\end{array}\right]\left[\begin{array}{rr}a & b \\ c & -a\end{array}\right]=\left[\begin{array}{cc}a^{2}+b c & a b+(-a b) \\ a c+(-a c) & c b+a^{2}\end{array}\right]=\left[\begin{array}{cc}a^{2}+b c & 0 \\ 0 & a^{2}+b c\end{array}\right]$
Two of the entries are already zero and the other two are both $a^{2}+b c$. So if $a^{2}+b c=0$, then $A^{2}=0$.
If $a=1, b=1, c=-1$, then $a^{2}+b c=0$, so the matrix $A=\left[\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right]$ will have $A^{2}=0$. If $a=2, b=4$,
$c=-1$, then $a^{2}+b c=0$, so the matrix $A=\left[\begin{array}{rr}2 & 4 \\ -1 & -2\end{array}\right]$ will have $A^{2}=0$.
64. Compute the product $A B$:
$A B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]=\left[\begin{array}{ll}a+b & a+b \\ c+d & c+d\end{array}\right]$
Two of the entries are $a+b$ and the other two are $c+d$, so if $a=-b$ and $c=-d$, then $A B=0$.
The following are a couple of examples of matrices A that will satisfy $A B=0$:

$$
\left[\begin{array}{ll}
2 & -2 \\
4 & -4
\end{array}\right] \quad\left[\begin{array}{rr}
-5 & 5 \\
1 & -1
\end{array}\right]
$$

67. $\left[\begin{array}{cc}1 & 3 \\ -2 & -2\end{array}\right]\left[\begin{array}{ll}x & 1 \\ 3 & 2\end{array}\right]=\left[\begin{array}{cc}x+9 & 7 \\ -2 x-6 & -6\end{array}\right]=\left[\begin{array}{cc}y & 7 \\ y & -6\end{array}\right]$
if and only if corresponding elements are equal.

$$
\begin{array}{cc}
x+9=y & 7 \stackrel{\vee}{=} 7 \\
-2 x-6=y & -6 \stackrel{\vee}{=}-6
\end{array}
$$

To find x and y, we solve the system:
$x+9=y$
$-2 x-6=y$ to obtain $x=-5, y=4$. (Solution left to the student.)
69. $\left[\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a+3 c & b+3 d \\ a+4 c & b+4 d\end{array}\right]=\left[\begin{array}{ll}6 & -5 \\ 7 & -7\end{array}\right]$
if and only if corresponding elements are equal.
$a+3 c=6 \quad b+3 d=-5$
$a+4 c=7 \quad b+4 d=-7$
Solving these systems we obtain $a=3, b=1, c=1, d=-2$. (Solution left to the student.)
71. (A) Since $\left[\begin{array}{cc}a_{1} & 0 \\ 0 & d_{1}\end{array}\right]+\left[\begin{array}{cc}a_{2} & 0 \\ 0 & d_{2}\end{array}\right]=\left[\begin{array}{cc}a_{1}+a_{2} & 0 \\ 0 & d_{1}+d_{2}\end{array}\right]$, the statement is true.
(B) $A+B=B+A$ is true for any matrices for which $A+B$ is defined, as it is in this case.
(C) Since $\left[\begin{array}{cc}a_{1} & 0 \\ 0 & d_{1}\end{array}\right]\left[\begin{array}{cc}a_{2} & 0 \\ 0 & d_{2}\end{array}\right]=\left[\begin{array}{cc}a_{1} a_{2} & 0 \\ 0 & d_{1} d_{2}\end{array}\right]$, the statement is true.
(D) Since $\left[\begin{array}{cc}a_{1} & 0 \\ 0 & d_{1}\end{array}\right]\left[\begin{array}{cc}a_{2} & 0 \\ 0 & d_{2}\end{array}\right]=\left[\begin{array}{cc}a_{1} a_{2} & 0 \\ 0 & d_{1} d_{2}\end{array}\right]=\left[\begin{array}{cc}a_{2} a_{1} & 0 \\ 0 & d_{2} d_{1}\end{array}\right]=\left[\begin{array}{cc}a_{2} & 0 \\ 0 & d_{2}\end{array}\right]\left[\begin{array}{cc}a_{1} & 0 \\ 0 & d_{1}\end{array}\right]$, the statement is true.
73. $\frac{1}{2}(A+B)=\frac{1}{2}\left(\left[\begin{array}{ll}30 & 25 \\ 60 & 80\end{array}\right]+\left[\begin{array}{ll}36 & 27 \\ 54 & 74\end{array}\right]\right)=\frac{1}{2}\left[\begin{array}{rr}66 & 52 \\ 114 & 154\end{array}\right]=\left[\begin{array}{ll}33 & 26 \\ 57 & 77\end{array}\right]$

This result provides the average cost of production for the two plants.
75. If a quantity is increased by 15%, the result is a multiplication by 1.15 .

If a quantity is increased by 10%, the result is a multiplication by 1.1 .
Thus we must calculate $1.1 N-1.15 \mathrm{M}$. The mark-up matrix is:

$$
\begin{aligned}
& 1.1 N-1.15 M=1.1\left[\begin{array}{llll}
13,900 & 783 & 263 & 215 \\
15,000 & 838 & 395 & 236 \\
18,300 & 967 & 573 & 248
\end{array}\right]-1.15\left[\begin{array}{llll}
10,400 & 682 & 215 & 182 \\
12,500 & 721 & 295 & 182 \\
16,400 & 827 & 443 & 192
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
15,290 & 861.3 & 289.3 & 236.5 \\
16,500 & 921.8 & 434.5 & 259.6 \\
20,130 & 1,063.7 & 630.3 & 272.8
\end{array}\right]-\left[\begin{array}{rrrr}
11,960 & 784.3 & 247.25 & 209.3 \\
14,375 & 829.15 & 339.25 & 209.3 \\
18,860 & 951.05 & 509.45 & 220.8
\end{array}\right] \\
& \text { Basic CD Cruise } \\
& \text { Car Air changer Control } \\
& =\begin{array}{rlrr}
& \text { Model } A \\
= & \text { Model } B \\
& \text { Model } C
\end{array}\left[\begin{array}{rrrr}
\$ 3,330 & \$ 77 & \$ 42 & \$ 27 \\
\$ 2,125 & \$ 93 & \$ 95 & \$ 50 \\
\$ 1,270 & \$ 113 & \$ 121 & \$ 52
\end{array}\right]=\text { Mark up }
\end{aligned}
$$

77. (A) $\left[\begin{array}{lll}0.6 & 0.6 & 0.2\end{array}\right]\left[\begin{array}{c}8 \\ 10 \\ 5\end{array}\right]=(0.6) 8+(0.6) 10+(0.2) 5=11.80$ dollars per boat
(B) $\left[\begin{array}{lll}1.5 & 1.2 & 0.4\end{array}\right]\left[\begin{array}{c}9 \\ 12 \\ 6\end{array}\right]=(1.5) 9+(1.2) 12+(0.4) 6=30.30$ dollars per boat
(C) The matrix $N M$ has no obvious meaning, but the matrix $M N$ gives the labor costs per boat at each plant.
(D) $M N=\left[\begin{array}{lll}0.6 & 0.6 & 0.2 \\ 1.0 & 0.9 & 0.3 \\ 1.5 & 1.2 & 0.4\end{array}\right]\left[\begin{array}{cc}8 & 9 \\ 10 & 12 \\ 5 & 6\end{array}\right]=\left[\begin{array}{ll}(0.6) 8+(0.6) 10+(0.2) 5 & (0.6) 9+(0.6) 12+(0.2) 6 \\ (1.0) 8+(0.9) 10+(0.3) 5 & (1.0) 9+(0.9) 12+(0.3) 6 \\ (1.5) 8+(1.2) 10+(0.4) 5 & (1.5) 9+(1.2) 12+(0.4) 6\end{array}\right]$

Plant I Plant II
 $=\left[\begin{array}{ll}\$ 11.80 & \$ 13.80 \\ \$ 18.50 & \$ 21.60 \\ \$ 26.00 & \$ 30.30\end{array}\right] \begin{gathered}\text { One-person boat } \\ \text { Two-person boat } \\ \text { Four-person boat }\end{gathered}$

This matrix gives the labor costs for each type of boat at each plant.
79. (A) $A^{2}=A A=\left[\begin{array}{lllll}0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{lllll}0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]=\left[\begin{array}{lllll}0 & 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0\end{array}\right]$

The 1 in row 2 and column 1 of A^{2} indicates that there is one way to travel from Baltimore to Atlanta with one intermediate connection. The 2 in row 1 and column 3 indicates that there are two ways to travel from Atlanta to Chicago with one intermediate connection. In general, the elements in A^{2} indicate the number of different ways to travel from the i th city to the j th city with one intermediate connection.
(B) $A^{3}=A^{2} A=\left[\begin{array}{lllll}0 & 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{lllll}0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]=\left[\begin{array}{lllll}2 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 & 1\end{array}\right]$

The 1 in row 4 and column 2 of A^{3} indicates that there is one way to travel from Denver to Baltimore with two intermediate connections. The 2 in row 1 and column 5 indicates that there are two ways to travel from Atlanta to El Paso with two intermediate connections. In general, the elements in A^{3} indicate the number of different ways to travel from the i th city to the the j th city with two intermediate connections.
(C) A is given above.

$$
\begin{aligned}
A+A^{2} & =\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]+\left[\begin{array}{lllll}
0 & 0 & 2 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lllll}
0 & 1 & 2 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 2 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \\
A+A^{2}+A^{3} & =\left[\begin{array}{lllll}
0 & 1 & 2 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 2 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]+\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllll}
2 & 1 & 2 & 1 & 2 \\
1 & 1 & 1 & 2 & 1 \\
1 & 1 & 3 & 2 & 1 \\
1 & 1 & 1 & 2 & 1 \\
1 & 0 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

A zero element remains, so we must compute A^{4}.

$$
A^{4}=A^{3} A=\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lllll}
0 & 2 & 0 & 4 & 0 \\
0 & 0 & 3 & 0 & 0 \\
3 & 0 & 0 & 0 & 3 \\
0 & 0 & 3 & 0 & 0 \\
0 & 1 & 0 & 2 & 0
\end{array}\right]
$$

Then $A+A^{2}+A^{3}+A^{4}=\left[\begin{array}{lllll}2 & 1 & 2 & 1 & 2 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 3 & 2 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 1 & 1\end{array}\right]+\left[\begin{array}{lllll}0 & 2 & 0 & 4 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 3 & 0 & 0 & 0 & 3 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 1 & 0 & 2 & 0\end{array}\right]=\left[\begin{array}{lllll}2 & 3 & 2 & 5 & 2 \\ 1 & 1 & 4 & 2 & 1 \\ 4 & 1 & 3 & 2 & 4 \\ 1 & 1 & 4 & 2 & 1 \\ 1 & 1 & 1 & 3 & 1\end{array}\right]$
This matrix indicates that it is possible to travel from any origin to any destination with at most 3 intermediate connections.
81. (A) $\left[\begin{array}{lll}1,000 & 500 & 5,000\end{array}\right]\left[\begin{array}{l}\$ 0.80 \\ \$ 1.50 \\ \$ 0.40\end{array}\right]=1,000(\$ 0.80)+500(\$ 1.50)+5,000(\$ 0.40)=\$ 3,550$
(B) $\left[\begin{array}{lll}2,000 & 800 & 8,000\end{array}\right]\left[\begin{array}{l}\$ 0.80 \\ \$ 1.50 \\ \$ 0.40\end{array}\right]=2,000(\$ 0.80)+800(\$ 1.50)+8,000(\$ 0.40)=\$ 6,000$
(C) The matrix $M N$ has no obvious interpretations, but the matrix $N M$ represents the total cost of all contacts in each town.
(D) $N M=\left[\begin{array}{lll}1,000 & 500 & 5,000 \\ 2,000 & 800 & 8,000\end{array}\right]\left[\begin{array}{l}\$ 0.80 \\ \$ 1.50 \\ \$ 0.40\end{array}\right]=\left[\begin{array}{l}1,000(0.80)+500(1.50)+5,000(0.40) \\ 2,000(0.80)+800(1.50)+8,000(0.40)\end{array}\right]$

$$
=\left[\begin{array}{l}
\$ 3,550 \\
\$ 6,000
\end{array}\right] \begin{aligned}
& \text { Berkeley } \\
& \text { Oakland }
\end{aligned}=\text { cost of all contacts in each town. }
$$

(E) The matrix [$\left[\begin{array}{ll}1 & 1\end{array}\right] N$ can be used to find the total number of each of the three types of contact:

$$
\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{lll}
1,000 & 500 & 5,000 \\
2,000 & 800 & 8,000
\end{array}\right]=\left[\begin{array}{ll}
1,000+2,000 & 500+800 \\
5,000+8,000
\end{array}\right]
$$

[Telephone House Letter] $=\left[\begin{array}{lll}3,000 & 1,300 & 13,000\end{array}\right.$
(F) The matrix $N\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ can be used to find the total number of contacts in each town:

$$
\left[\begin{array}{lll}
1,000 & 500 & 5,000 \\
2,000 & 800 & 8,000
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1,000+500+5,000 \\
2,000+800+8,000
\end{array}\right]=\left[\begin{array}{r}
6,500 \\
10,800
\end{array}\right]=\left[\begin{array}{l}
\text { Berkeley contacts } \\
\text { Oakland contacts }
\end{array}\right]
$$

83. (A) Since player 1 did not defeat player 1 , a 0 is placed in row 1 , column 1 . Since player 1 did not defeat player 2, a 0 is placed in row 1 , column 2. Since player 1 defeated player 3 , a 1 is placed in row 1 , column 3 . Since player 1 defeated player 4 , a 1 is placed in row 1 , column 4. Since player 1 defeated player 5 , a 1 is placed in row 1 , column 5. Since player 1 did not defeat player 6 , a 0 is placed in row 1 , column 6. Proceeding in this manner, we obtain
$A=\left[\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$
(B) $A^{2}=\left[\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]=\left[\begin{array}{llllll}0 & 1 & 1 & 2 & 0 & 2 \\ 0 & 0 & 2 & 2 & 1 & 2 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 3 & 2 & 0\end{array}\right]$
$A+A^{2}=\left[\begin{array}{llllll}0 & 1 & 2 & 3 & 1 & 2 \\ 1 & 0 & 2 & 3 & 2 & 2 \\ 1 & 1 & 0 & 2 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 2 & 2 & 2 & 0 & 2 \\ 2 & 2 & 2 & 3 & 2 & 0\end{array}\right]=B$
Check (using graphing calculator):

Finally $B^{-1} A^{-1}$ is calculated as $C=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right] \quad$ Then $B C=\left[\begin{array}{llllll}0 & 1 & 2 & 3 & 1 & 2 \\ 1 & 0 & 2 & 3 & 2 & 2 \\ 1 & 1 & 0 & 2 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 2 & 2 & 2 & 0 & 2 \\ 2 & 2 & 2 & 3 & 2 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{r}9 \\ 10 \\ 6 \\ 4 \\ 9 \\ 11\end{array}\right]$
(D) $B C$ measures the relative strength of the players, with the larger numbers representing greater strength. Thus, player 6 is the strongest and player 4 the weakest; ranking:
Frank, Bart, Aaron \& Elvis (tie), Charles, Dan.

Section 10-4

1. An identity matrix is a square matrix I whose product with any matrix A, if defined, is A.
2. The inverse matrix A^{-1} of a matrix A is a matrix such that $A A^{-1}=A^{-1} A=I$. Not every matrix has an inverse.
3. Answers will vary. 7. Answers will vary. 9. Gauss-Jordan elimination is the best approach.
4. $\left[\begin{array}{rr}2 & -3 \\ 4 & 5\end{array}\right]$ 13. $\left[\begin{array}{rrr}-2 & 1 & 3 \\ 2 & 4 & -2 \\ 5 & 1 & 0\end{array}\right]$ 15. $\left[\begin{array}{cc}3 & -4 \\ -2 & 3\end{array}\right]\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}3 \cdot 3+(-4) 2 & 3 \cdot 4+(-4) 3 \\ (-2) 3+3 \cdot 2 & (-2) 4+3 \cdot 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Thus, these two matrices are inverses of each other.
17. $\left[\begin{array}{cc}2 & 2 \\ -1 & -1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right]=\left[\begin{array}{cc}2 \cdot 1+2(-1) & 2 \cdot 1+2(-1) \\ (-1) 1+(-1)(-1) & (-1) 1+(-1)(-1)\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

Thus, these two matrices are not inverses of each other.
19. $\left[\begin{array}{ll}-5 & 2 \\ -8 & 3\end{array}\right]\left[\begin{array}{ll}3 & -2 \\ 8 & -5\end{array}\right]=\left[\begin{array}{ll}(-5) 3+2 \cdot 8 & (-5)(-2)+2(-5) \\ (-8) 3+3 \cdot 8 & (-8)(-2)+3(-5)\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Thus, these two matrices are inverses of each other.
21. $\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1\end{array}\right]\left[\begin{array}{ccc}1 & -2 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 0\end{array}\right]=\left[\begin{array}{ccc}1 \cdot 1+2 \cdot 0+0 \cdot 1 & 1(-2)+2 \cdot 1+0(-1) & 1 \cdot 0+2 \cdot 0+0 \cdot 0 \\ 0 \cdot 1+1 \cdot 0+0 \cdot 1 & 0(-2)+1 \cdot 1+0(-1) & 0 \cdot 0+1 \cdot 0+0 \cdot 0 \\ (-1) 1+(-1) 0+1 \cdot 1 & (-1)(-2)+(-1) 1+1(-1) & (-1) 0+(-1) 0+1 \cdot 0\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$

Thus, these two matrices are not inverses of each other.
23. $\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -1 \\ 2 & 3 & 0\end{array}\right]\left[\begin{array}{ccc}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]=\left[\begin{array}{ccc}1 \cdot 3+(-1)(-2)+1(-4) & 1 \cdot 3+(-1)(-2)+1(-5) & 1(-1)+(-1) 1+1 \cdot 2 \\ 0 \cdot 3+2(-2)+(-1)(-4) & 0 \cdot 3+2(-2)+(-1)(-5) & 0(-1)+2 \cdot 1+(-1) 2 \\ 2 \cdot 3+3(-2)+0(-4) & 2 \cdot 3+3(-2)+0(-5) & 2(-1)+3 \cdot 1+0 \cdot 2\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Thus, these two matrices are inverses of each other.
25. $2 x_{1}-x_{2}=3$
$x_{1}+3 x_{2}=-2$
27. $-2 x_{1} \quad+x_{3}=3$
$x_{1}+2 x_{2}+x_{3}=-4$

$$
x_{2}-x_{3}=2
$$

29. $\left[\begin{array}{cc}4 & -3 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
30. $\left[\begin{array}{ccc}1 & -2 & 1 \\ -1 & 1 & 0 \\ 2 & 3 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-1 \\ 2 \\ -3\end{array}\right]$
31. Since $\left[\begin{array}{cc}3 & -2 \\ 1 & 4\end{array}\right]\left[\begin{array}{c}-2 \\ 1\end{array}\right]=\left[\begin{array}{cc}3(-2) & (-2) 1 \\ 1(-2) & 4 \cdot 1\end{array}\right]=\left[\begin{array}{c}-8 \\ 2\end{array}\right],\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-8 \\ 2\end{array}\right]$ if and only if $x_{1}=-8$ and $x_{2}=2$.
32. Since $\left[\begin{array}{cc}-2 & 3 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{cc}(-2) 3 & 3 \cdot 2 \\ 2 \cdot 3 & (-1) 2\end{array}\right]=\left[\begin{array}{l}0 \\ 4\end{array}\right],\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 4\end{array}\right]$ if and only if $x_{1}=0$ and $x_{2}=4$.
33. $\left[\begin{array}{ll}1 & -1 \\ 1 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}5 \\ 7\end{array}\right]$

$$
A \quad X=B
$$

$A X=B$ has solution $X=A^{-1} B$.
To find A^{-1}, we perform row operations on

$$
\begin{aligned}
& {\left[\begin{array}{rr|rr}
1 & -1 & 1 & 0 \\
1 & -2 & 0 & 1
\end{array}\right](-1) R_{1}+R_{2} \rightarrow R_{2} } \\
\sim & {\left[\begin{array}{rr|rr}
1 & -1 & 1 & 0 \\
0 & -1 & -1 & 1
\end{array}\right](-1) R_{2}+R_{1} \rightarrow R_{1} } \\
\sim & {\left[\begin{array}{rr|rr}
1 & 0 & 2 & -1 \\
0 & -1 & -1 & 1
\end{array}\right](-1) R_{2} \rightarrow R_{2} } \\
\sim & {\left[\begin{array}{rr|rr}
1 & 0 & 2 & -1 \\
0 & 1 & 1 & -1
\end{array}\right] }
\end{aligned}
$$

Hence $A^{-1}=\left[\begin{array}{ll}2 & -1 \\ 1 & -1\end{array}\right]$
Check: $A^{-1} A=\left[\begin{array}{ll}2 & -1 \\ 1 & -1\end{array}\right]\left[\begin{array}{ll}1 & -1 \\ 1 & -2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\text { Hence } A^{-1}=\left[\begin{array}{rr}
\frac{3}{5} & \frac{1}{5} \\
\frac{2}{5} & -\frac{1}{5}
\end{array}\right]
$$

Then

X
$A^{-1} \quad B$
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{ll}2 & -1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}5 \\ 7\end{array}\right]=\left[\begin{array}{r}3 \\ -2\end{array}\right] \quad x_{1}=3, x_{2}=-2$.
39. $\left[\begin{array}{rr}1 & 1 \\ 2 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}15 \\ 10\end{array}\right]$
$A \quad X=B$
$A X=B$ has solution $X=A^{-1} B$.
To find A^{-1}, we perform row operations on

$$
\begin{aligned}
& {\left[\begin{array}{rr|rr}
1 & 1 & 1 & 0 \\
2 & -3 & 0 & 1
\end{array}\right](-2) R_{1}+R_{2} \rightarrow R_{2} } \\
\sim & {\left[\begin{array}{rr|rr}
1 & 1 & 1 & 0 \\
0 & -5 & -2 & 1
\end{array}\right]\left(-\frac{1}{5}\right) R_{2} \rightarrow R_{2} } \\
\sim & {\left[\begin{array}{rr|rr}
1 & 1 & 1 & 0 \\
0 & 1 & \frac{2}{5} & -\frac{1}{5}
\end{array}\right](-1) R_{2}+R_{1} \rightarrow R_{1} } \\
\sim & {\left[\begin{array}{rr|rr}
1 & 0 & \frac{3}{5} & \frac{1}{5} \\
0 & 1 & \frac{2}{5} & -\frac{1}{5}
\end{array}\right] }
\end{aligned}
$$

Check: $\quad A^{-1} A=\left[\begin{array}{rr}\frac{3}{5} & \frac{1}{5} \\ \frac{2}{5} & -\frac{1}{5}\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ 2 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Then

$$
\begin{gathered}
X \\
A^{-1} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{rr}
\frac{3}{5} & \frac{1}{5} \\
\frac{2}{5} & -\frac{1}{5}
\end{array}\right]\left[\begin{array}{c}
15 \\
10
\end{array}\right]=\left[\begin{array}{c}
11 \\
4
\end{array}\right] \quad x_{1}=11, x_{2}=4}
\end{gathered}
$$

41. $\left[\begin{array}{ll|ll}1 & 9 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right](-9) R_{2}+R_{1} \rightarrow R_{1} \sim\left[\begin{array}{rr|rr}1 & 0 & 1 & -9 \\ 0 & 1 & 0 & 1\end{array}\right]$ Hence, $M^{-1}=\left[\begin{array}{cc}1 & -9 \\ 0 & 1\end{array}\right]$

Check: $M^{-1} M=\left[\begin{array}{cc}1 & -9 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 9 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 \cdot 1+(-9) 0 & 1 \cdot 9+(-9) 1 \\ 0 \cdot 1+1 \cdot 0 & 0 \cdot 9+1 \cdot 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
43. $\left[\begin{array}{rr|rr}-1 & -2 & 1 & 0 \\ 2 & 5 & 0 & 1\end{array}\right] \underset{2 R_{1}+R_{2} \rightarrow R_{2}}{\sim} \sim\left[\begin{array}{rr|rr}-1 & -2 & 1 & 0 \\ 0 & 1 & 2 & 1\end{array}\right] \underset{2 R_{2}+R_{1} \rightarrow R_{1}}{\sim} \sim\left[\begin{array}{rr|rr}-1 & 0 & 5 & 2 \\ 0 & 1 & 2 & 1\end{array}\right](-1) R_{1} \rightarrow R_{1}$
$\sim\left[\begin{array}{ll|rr}1 & 0 & -5 & -2 \\ 0 & 1 & 2 & 1\end{array}\right]$ Hence, $M^{-1}=\left[\begin{array}{cc}-5 & -2 \\ 2 & 1\end{array}\right]$
Check: $M^{-1} M=\left[\begin{array}{cc}-5 & -2 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}-1 & -2 \\ 2 & 5\end{array}\right]=\left[\begin{array}{cc}(-5)(-1)+(-2) 2 & (-5)(-2)+(-2) 5 \\ 2(-1)+1 \cdot 2 & 2(-2)+1 \cdot 5\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
45. $\quad\left[\begin{array}{rr|rr}-5 & 7 & 1 & 0 \\ 2 & -3 & 0 & 1\end{array}\right] 3 R_{2}+R_{1} \rightarrow R_{1} \sim\left[\begin{array}{ll|rr}1 & -2 & 1 & 3 \\ 2 & -3 & 0 & 1\end{array}\right](-2) R_{1}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{rr|rr}1 & -2 & 1 & 3 \\ 0 & 1 & -2 & -5\end{array}\right] 2 R_{2}+R_{1} \rightarrow R_{1}$
$\sim\left[\begin{array}{cc|cc}1 & 0 & -3 & -7 \\ 0 & 1 & -2 & -5\end{array}\right]$ Hence, $M^{-1}=\left[\begin{array}{cc}-3 & -7 \\ -2 & -5\end{array}\right]$
Check: $M^{-1} M=\left[\begin{array}{ll}-3 & -7 \\ -2 & -5\end{array}\right]\left[\begin{array}{rr}-5 & 7 \\ 2 & -3\end{array}\right]=\left[\begin{array}{ll}(-3)(-5)+(-7) 2 & (-3) 7+(-7)(-3) \\ (-2)(-5)+(-5) 2 & (-2) 7+(-5)(-3)\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
47. If the inverse existed we would find it by row operations on the following matrix: $=\left[\begin{array}{cc|cc}3 & 9 & 1 & 0 \\ 2 & 6 & 0 & 1\end{array}\right]$ But consider what happens if we perform $\left(-\frac{2}{3}\right) R_{1}+R_{2} \rightarrow R_{2}=\left[\begin{array}{ll|rr}3 & 9 & 1 & 0 \\ 0 & 0 & -\frac{2}{3} & 1\end{array}\right]$
Since a row of zeros results to the left of the vertical line, no inverse exists.
49. $\quad\left[\begin{array}{ll|ll}2 & 3 & 1 & 0 \\ 3 & 5 & 0 & 1\end{array}\right] \frac{1}{2} R_{1} \rightarrow R_{1} \sim\left[\begin{array}{ll|ll}1 & 1.5 & 0.5 & 0 \\ 3 & 5 & 0 & 1\end{array}\right] \underset{(-3) R_{1}+R_{2} \rightarrow R_{2}}{\sim} \sim\left[\begin{array}{rr|rr}1 & 1.5 & 0.5 & 0 \\ 0 & 0.5 & -1.5 & 1\end{array}\right] 2 R_{2} \rightarrow R_{2}$ $\sim\left[\begin{array}{ll|cc}1 & 1.5 & 0.5 & 0 \\ 0 & 1 & -3 & 2\end{array}\right] \underset{(-1.5) R_{2}+R_{1} \rightarrow R_{1}}{\sim} \sim\left[\begin{array}{ll|rr}1 & 0 & 5 & -3 \\ 0 & 1 & -3 & 2\end{array}\right]$ The inverse is $\left[\begin{array}{rr}5 & -3 \\ -3 & 2\end{array}\right]$
The checking steps are omitted for lack of space in this and some subsequent problems.
51. $\left[\begin{array}{ccc|ccc}1 & -1 & 0 & 1 & 0 & 0 \\ -1 & 1 & -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1\end{array}\right] R_{1}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{ccc|ccc}1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1\end{array}\right] R_{2} \leftrightarrow R_{3}$
$\sim\left[\begin{array}{ccc|ccc}1 & -1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 & 1 & 0\end{array}\right](-1) R_{2}+R_{1} \rightarrow R_{1} \sim\left[\begin{array}{rrr|rrr}1 & 0 & -1 & 1 & 0 & -1 \\ 0 & -1 & 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 & 1 & 0\end{array}\right] \begin{array}{r}(-1) R_{3}+R_{1} \rightarrow R_{1} \\ R_{3}+R_{2} \rightarrow R_{2}\end{array}$
$\sim\left[\begin{array}{rrr|rrr}1 & 0 & 0 & 0 & -1 & -1 \\ 0 & -1 & 0 & 1 & 1 & 1 \\ 0 & 0 & -1 & 1 & 1 & 0\end{array}\right] \begin{aligned} & (-1) R_{2} \rightarrow R_{2} \\ & (-1) R_{3} \rightarrow R_{3}\end{aligned} \sim\left[\begin{array}{rrr|rrr}1 & 0 & 0 & 0 & -1 & -1 \\ 0 & 1 & 0 & -1 & -1 & -1 \\ 0 & 0 & 1 & -1 & -1 & 0\end{array}\right]$ Hence, $M^{-1}=\left[\begin{array}{ccc}0 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & 0\end{array}\right]$
Check: $M^{-1} M=\left[\begin{array}{ccc}0 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & 0\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}0 \cdot 1+(-1)(-1)+(-1) 0 & 0(-1)+(-1) 1+(-1)(-1) & 0 \cdot 0+(-1)(-1)+(-1) 1 \\ (-1) 1+(-1)(-1)+(-1) 0 & (-1)(-1)+(-1) 1+(-1)(-1) & (-1) 0+(-1)(-1)+(-1) 1 \\ (-1) 1+(-1)(-1)+0 \cdot 0 & (-1)(-1)+(-1) 1+0(-1) & (-1) 0+(-1)(-1)+0 \cdot 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
53. $\left[\begin{array}{rrr|rrr}1 & 2 & 5 & 1 & 0 & 0 \\ 3 & 5 & 9 & 0 & 1 & 0 \\ 1 & 1 & -2 & 0 & 0 & 1\end{array}\right] \underset{\substack{(-3) R_{1}+R_{2} \rightarrow R_{2} \\(-1) R_{1}+R_{3} \rightarrow R_{3}}}{\sim}\left[\begin{array}{rrr|rrr}1 & 2 & 5 & 1 & 0 & 0 \\ 0 & -1 & -6 & -3 & 1 & 0 \\ 0 & -1 & -7 & -1 & 0 & 1\end{array}\right] \quad \begin{aligned} & 2 R_{2}+R_{1} \rightarrow R_{1} \\ & (-1) R_{2}+R_{3} \rightarrow R_{3}\end{aligned}$
$\sim\left[\begin{array}{rrr|rrr}1 & 0 & -7 & -5 & 2 & 0 \\ 0 & -1 & -6 & -3 & 1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 1\end{array}\right] \begin{aligned} & (-7) R_{3}+R_{1} \rightarrow R_{1} \\ & (-6) R_{3}+R_{2} \rightarrow R_{2}\end{aligned} \sim\left[\begin{array}{rrr|rrr}1 & 0 & 0 & -19 & 9 & -7 \\ 0 & -1 & 0 & -15 & 7 & -6 \\ 0 & 0 & -1 & 2 & -1 & 1\end{array}\right] \begin{aligned} & (-1) R_{2} \rightarrow R_{2} \\ & (-1) R_{3} \rightarrow R_{3}\end{aligned}$
$\sim\left[\begin{array}{lll|rrr}1 & 0 & 0 & -19 & 9 & -7 \\ 0 & 1 & 0 & 15 & -7 & 6 \\ 0 & 0 & 1 & -2 & 1 & -1\end{array}\right]$ Hence, $M^{-1}=\left[\begin{array}{ccc}-19 & 9 & -7 \\ 15 & -7 & 6 \\ -2 & 1 & -1\end{array}\right]$
Check: $M^{-1} M=\left[\begin{array}{ccc}-19 & 9 & -7 \\ 15 & -7 & 6 \\ -2 & 1 & -1\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 5 \\ 3 & 5 & 9 \\ 1 & 1 & -2\end{array}\right]$

$$
=\left[\begin{array}{ccc}
(-19) 1+9 \cdot 3+(-7) 1 & (-19) 2+9 \cdot 5+(-7) 1 & (-19) 5+9 \cdot 9+(-7)(-2) \\
15 \cdot 1+(-7) 3+6 \cdot 1 & 15 \cdot 2+(-7) 5+6 \cdot 1 & 15 \cdot 5+(-7) 9+6(-2) \\
(-2) 1+1 \cdot 3+(-1) 1 & (-2) 2+1 \cdot 5+(-1) 1 & (-2) 5+1 \cdot 9+(-1)(-2)
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

55. $\left[\begin{array}{rrr|rrr}2 & 2 & -1 & 1 & 0 & 0 \\ 0 & 4 & -1 & 0 & 1 & 0 \\ -1 & -2 & 1 & 0 & 0 & 1\end{array}\right] R_{1} \leftrightarrow R_{3} \sim\left[\begin{array}{rrr|rrr}-1 & -2 & 1 & 0 & 0 & 1 \\ 0 & 4 & -1 & 0 & 1 & 0 \\ 2 & 2 & -1 & 1 & 0 & 0\end{array}\right] 2 R_{1}+R_{3} \rightarrow R_{3}$
$\sim\left[\begin{array}{rrr|rrr}-1 & -2 & 1 & 0 & 0 & 1 \\ 0 & 4 & -1 & 0 & 1 & 0 \\ 0 & -2 & 1 & 1 & 0 & 2\end{array}\right] \begin{aligned} & (-1) R_{3}+R_{1} \rightarrow R_{1} \\ & 2 R_{3}+R_{2} \rightarrow R_{2}\end{aligned} \sim\left[\begin{array}{rrr|rrr}-1 & 0 & 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & 2 & 1 & 4 \\ 0 & -2 & 1 & 1 & 0 & 2\end{array}\right](-1) R_{2}+R_{3} \rightarrow R_{3}$
$\sim\left[\begin{array}{rrr|rrr}-1 & 0 & 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & 2 & 1 & 4 \\ 0 & -2 & 0 & -1 & -1 & -2\end{array}\right] R_{2} \leftrightarrow R_{3} \sim\left[\begin{array}{rrr|rrr}-1 & 0 & 0 & -1 & 0 & -1 \\ 0 & -2 & 0 & -1 & -1 & -2 \\ 0 & 0 & 1 & 2 & 1 & 4\end{array}\right] \begin{aligned} & (-1) R_{1} \rightarrow R_{1} \\ & \left(-\frac{1}{2}\right) R_{2} \rightarrow R_{2}\end{aligned}$
$\sim\left[\begin{array}{lll|lll}1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & \frac{1}{2} & \frac{1}{2} & 1 \\ 0 & 0 & 1 & 2 & 1 & 4\end{array}\right]$ The inverse is $\left[\begin{array}{ccc}1 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 1 \\ 2 & 1 & 4\end{array}\right]$
56. If the inverse existed we would find it by row operations on the following matrix: $\left[\begin{array}{ccc|ccc}2 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ -1 & -1 & 0 & 0 & 0 & 1\end{array}\right]$ But consider what happens if we perform $R_{2}+R_{3} \rightarrow R_{2}\left[\begin{array}{ccc|ccc}2 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ -1 & -1 & 0 & 0 & 0 & 1\end{array}\right]$
Since a row of zeros results to the left of the vertical line, no inverse exists.
57. $\left[\begin{array}{rrr|rrr}1 & 5 & 10 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 1 & 6 & 15 & 0 & 0 & 1\end{array}\right] \underset{(-1) R_{1}+R_{3} \rightarrow R_{3}}{\sim} \sim\left[\begin{array}{rrr|rrr}1 & 5 & 10 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 0 & 1 & 5 & -1 & 0 & 1\end{array}\right](-5) R_{2}+R_{1} \rightarrow R_{1}$ $\sim\left[\begin{array}{rrr|rrr}1 & 0 & -10 & 1 & -5 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & -1 & 1\end{array}\right] \begin{aligned} & 10 R_{3}+R_{1} \rightarrow R_{1} \\ & (-4) R_{3}+R_{2} \rightarrow R_{2} \sim\end{aligned}\left[\begin{array}{lll|rrr}1 & 0 & 0 & -9 & -15 & 10 \\ 0 & 1 & 0 & 4 & 5 & -4 \\ 0 & 0 & 1 & -1 & -1 & 1\end{array}\right]$ The inverse is $\left[\begin{array}{rrr}-9 & -15 & 10 \\ 4 & 5 & -4 \\ -1 & -1 & 1\end{array}\right]$
58. $\left[\begin{array}{cc}-1 & -2 \\ 2 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}k_{1} \\ k_{2}\end{array}\right]$
$A X=K$ has solution $X=A^{-1} K$.
We find $A^{-1} K$ for each given K. From problem 43, $A^{-1}=\left[\begin{array}{cc}-5 & -2 \\ 2 & 1\end{array}\right]$
(A) $K=\left[\begin{array}{l}2 \\ 5\end{array}\right] A^{-1} K=\left[\begin{array}{cc}-5 & -2 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 5\end{array}\right]=\left[\begin{array}{c}-20 \\ 9\end{array}\right] \quad x_{1}=-20, x_{2}=9$
(B) $K=\left[\begin{array}{c}-4 \\ 1\end{array}\right] A^{-1} K=\left[\begin{array}{cc}-5 & -2 \\ 2 & 1\end{array}\right]\left[\begin{array}{c}-4 \\ 1\end{array}\right]=\left[\begin{array}{c}18 \\ -7\end{array}\right] x_{1}=18, x_{2}=-7$
(C) $K=\left[\begin{array}{l}-3 \\ -2\end{array}\right] A^{-1} K=\left[\begin{array}{cc}-5 & -2 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}-3 \\ -2\end{array}\right]=\left[\begin{array}{c}19 \\ -8\end{array}\right] \quad x_{1}=19, x_{2}=-8$
59. $\left[\begin{array}{cc}-5 & 7 \\ 2 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}k_{1} \\ k_{2}\end{array}\right]$
$A X=K$ has solution $X=A^{-1} K$.
We find $A^{-1} K$ for each given K. From problem 45, $A^{-1}=\left[\begin{array}{ll}-3 & -7 \\ -2 & -5\end{array}\right]$
(A) $K=\left[\begin{array}{c}-5 \\ 1\end{array}\right] A^{-1} K=\left[\begin{array}{cc}-3 & -7 \\ -2 & -5\end{array}\right]\left[\begin{array}{c}-5 \\ 1\end{array}\right]=\left[\begin{array}{l}8 \\ 5\end{array}\right] \quad x_{1}=8, x_{2}=5$
(B) $K=\left[\begin{array}{c}8 \\ -4\end{array}\right] A^{-1} K=\left[\begin{array}{ll}-3 & -7 \\ -2 & -5\end{array}\right]\left[\begin{array}{c}8 \\ -4\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right] \quad x_{1}=4, x_{2}=4$
(C) $K=\left[\begin{array}{l}6 \\ 0\end{array}\right] A^{-1} K=\left[\begin{array}{ll}-3 & -7 \\ -2 & -5\end{array}\right]\left[\begin{array}{l}6 \\ 0\end{array}\right]=\left[\begin{array}{l}-18 \\ -12\end{array}\right] \quad x_{1}=-18, x_{2}=-12$
60. $\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}k_{1} \\ k_{2} \\ k_{3}\end{array}\right]$
$A X=K$ has solution $X=A^{-1} K$.
We find $A^{-1} K$ for each given K. From problem 51, $A^{-1}=\left[\begin{array}{ccc}0 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & 0\end{array}\right]$
(A) $K=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right] A^{-1} K=\left[\begin{array}{ccc}0 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}-3 \\ -4 \\ -2\end{array}\right] \quad x_{1}=-3, x_{2}=-4, x_{3}=-2$
(B) $K=\left[\begin{array}{c}-1 \\ 0 \\ -4\end{array}\right] A^{-1} K=\left[\begin{array}{ccc}0 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & 0\end{array}\right]\left[\begin{array}{c}-1 \\ 0 \\ -4\end{array}\right]=\left[\begin{array}{l}4 \\ 5 \\ 1\end{array}\right] \quad x_{1}=4, x_{2}=5, x_{3}=1$
(C) $K=\left[\begin{array}{c}3 \\ -2 \\ 0\end{array}\right] A^{-1} K=\left[\begin{array}{ccc}0 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & 0\end{array}\right]\left[\begin{array}{c}3 \\ -2 \\ 0\end{array}\right]=\left[\begin{array}{c}2 \\ -1 \\ -1\end{array}\right] \quad x_{1}=2, x_{2}=-1, x_{3}=-1$
61. $\left[\begin{array}{ccc}1 & 2 & 5 \\ 3 & 5 & 9 \\ 1 & 1 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}k_{1} \\ k_{2} \\ k_{3}\end{array}\right]$
$A X=K$ has solution $X=A^{-1} K$.
We find $A^{-1} K$ for each given K. From problem 53, $A^{-1}=\left[\begin{array}{ccc}-19 & 9 & -7 \\ 15 & -7 & 6 \\ -2 & 1 & -1\end{array}\right]$
(A) $K=\left[\begin{array}{l}0 \\ 1 \\ 4\end{array}\right] A^{-1} K=\left[\begin{array}{ccc}-19 & 9 & -7 \\ 15 & -7 & 6 \\ -2 & 1 & -1\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 4\end{array}\right]=\left[\begin{array}{c}-19 \\ 17 \\ -3\end{array}\right] \quad x_{1}=-19, x_{2}=17, x_{3}=-3$
(B) $\quad K=\left[\begin{array}{c}5 \\ -1 \\ 0\end{array}\right] A^{-1} K=\left[\begin{array}{ccc}-19 & 9 & -7 \\ 15 & -7 & 6 \\ -2 & 1 & -1\end{array}\right]\left[\begin{array}{c}5 \\ -1 \\ 0\end{array}\right]=\left[\begin{array}{c}-104 \\ 82 \\ -11\end{array}\right] x_{1}=-104, x_{2}=82, x_{3}=-11$
(C) $K=\left[\begin{array}{c}-6 \\ 0 \\ 2\end{array}\right] A^{-1} K=\left[\begin{array}{ccc}-19 & 9 & -7 \\ 15 & -7 & 6 \\ -2 & 1 & -1\end{array}\right]\left[\begin{array}{c}-6 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{c}100 \\ -78 \\ 10\end{array}\right] \quad x_{1}=100, x_{2}=-78, x_{3}=10$
62.

$$
\begin{aligned}
A X & =B X+C \\
A X+(-B X) & =(-B X)+B X+C \\
A X-B X & =0+C \\
A X-B X & =C \\
(A-B) X & =C
\end{aligned}
$$

Addition property of equality
Additive inverse property; definition of subtraction
Right distributive property
[To be more careful, we should write

$$
\begin{array}{rlrl}
A X-B X & =A X+-B X & & \text { by the definition of subtraction } \\
& =[A+(-B)] X & & \text { by the right distributive property } \\
& =(A-B) X & & \text { by the definition of subtraction } \\
& & \text { but the distributive properties are }
\end{array}
$$ generally understood as applying to subtraction also.]

$(A-B)^{-1}[(A-B) X]=(A-B)^{-1} C \quad$ Left multiplication property of equality
$\left[(A-B)^{-1}(A-B)\right] X=(A-B)^{-1} C \quad$ Associative property
$I X=(A-B)^{-1} C \quad$ Multiplicative inverse property $X=(A-B)^{-1} C \quad$ Multiplicative identity property
71.

$$
\begin{aligned}
X & =A X+C & & \\
X+(-A X) & =(-A X)+A X+C & & \text { Addition property of equality } \\
X-A X & =0+C & & \text { Additive inverse property; definition of subtraction } \\
X-A X & =C & & \text { Additive identity property } \\
I X-A X & =C & & \text { Multiplicative identity property } \\
(I-A) X & =C & & \text { Right distributive property } \\
(I-A)^{-1}[(I-A) X] & =(I-A)^{-1} C & & \text { Left multiplication property of equality } \\
{\left[(I-A)^{-1}(I-A)\right] X } & =(I-A)^{-1} C & & \text { Associative property } \\
I X & =(I-A)^{-1} C & & \text { Multiplicative inverse property } \\
X & =(I-A)^{-1} C & & \text { Multiplicative identity property }
\end{aligned}
$$

73.

$$
\begin{aligned}
A X+C & =3 X \\
A X+(-A X)+C & =3 X+(-A X) \\
0+C & =3 X-A X \\
C & =3 X-A X \\
C & =3 I X-A X \\
C & =(3 I-A) X \\
(3 I-A)^{-1} C & =(3 I-A)^{-1}[(3 I-A) X] \\
(3 I-A)^{-1} C & =\left[(3 I-A)^{-1}(3 I-A)\right] X \\
(3 I-A)^{-1} C & =I X \\
(3 I-A)^{-1} C & =X
\end{aligned}
$$

Addition property of equality
Additive inverse property; definition of subtraction Additive identity property
Multiplicative identity property
Right distributive property
Left multiplication property of equality
Associative property
Multiplicative inverse property
Multiplicative inverse property
75. Try to find A^{-1} :
$\left[\begin{array}{cc|cc}a & 0 & 1 & 0 \\ 0 & d & 0 & 1\end{array}\right] \frac{1}{a} R_{1} \rightarrow R_{1} \sim\left[\begin{array}{cc|cc}1 & 0 & \frac{1}{a} & 0 \\ 0 & d & 0 & 1\end{array}\right] \frac{1}{d} R_{2} \rightarrow R_{2} \sim\left[\begin{array}{cc|cc}1 & 0 & \frac{1}{a} & 0 \\ 0 & 1 & 0 & \frac{1}{d}\end{array}\right]$ The inverse is $A^{-1}=\left[\begin{array}{cc}\frac{1}{a} & 0 \\ 0 & \frac{1}{d}\end{array}\right]$
This will exist unless either a or d is zero, which would make $\frac{1}{a}$ or $\frac{1}{d}$ undefined. So A^{-1} exists exactly when both a and d are non-zero.
77. (A) $A^{-1}:\left[\begin{array}{cc|cc}3 & 2 & 1 & 0 \\ -4 & -3 & 0 & 1\end{array}\right] R_{2}+R_{1} \rightarrow R_{1}$

$$
\begin{aligned}
A^{2} & :\left[\begin{array}{cc}
3 & 2 \\
-4 & -3
\end{array}\right]\left[\begin{array}{cc}
3 & 2 \\
-4 & -3
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 \cdot 3+2(-4) & 3 \cdot 2+2(-3) \\
(-4) 3+(-3)(-4) & (-4) 2+(-3)(-3)
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$\sim\left[\begin{array}{ll|ll}-1 & -1 & 1 & 1 \\ -4 & -3 & 0 & 1\end{array}\right](-1) R_{1} \rightarrow R_{1}$
$\sim\left[\begin{array}{cc|cc}1 & 1 & -1 & -1 \\ -4 & -3 & 0 & 1\end{array}\right] 4 R_{1}+R_{2} \rightarrow R_{2}$
$\sim\left[\begin{array}{ll|ll}1 & 1 & -1 & -1 \\ 0 & 1 & -4 & -3\end{array}\right](-1) R_{2}+R_{1} \rightarrow R_{1}$

$$
\sim\left[\begin{array}{cc|cc}
1 & 0 & 3 & 2 \\
0 & 1 & -4 & -3
\end{array}\right] \quad A^{-1}=\left[\begin{array}{cc}
3 & 2 \\
-4 & -3
\end{array}\right]
$$

(B) $A^{-1}:\left[\begin{array}{cc|cc}-2 & -1 & 1 & 0 \\ 3 & 2 & 0 & 1\end{array}\right] R_{2}+R_{1} \rightarrow R_{1}$

$$
A^{2}:\left[\begin{array}{cc}
-2 & -1 \\
3 & 2
\end{array}\right]\left[\begin{array}{cc}
-2 & -1 \\
3 & 2
\end{array}\right]
$$

$\sim\left[\begin{array}{ll|ll}1 & 1 & 1 & 1 \\ 3 & 2 & 0 & 1\end{array}\right](-3) R_{1}+R_{2} \rightarrow R_{2}$
$=\left[\begin{array}{cc}(-2)(-2)+(-1) 3 & (-2)(-1)+(-1) 2 \\ 3(-2)+2 \cdot 3 & 3(-1)+2 \cdot 2\end{array}\right]$
$\sim\left[\begin{array}{cc|cc}1 & 1 & 1 & 1 \\ 0 & -1 & -3 & -2\end{array}\right] R_{2}+R_{1} \rightarrow R_{1}$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\sim\left[\begin{array}{cc|cc}1 & 0 & -2 & -1 \\ 0 & -1 & -3 & -2\end{array}\right](-1) R_{2} \rightarrow R_{2}$
$\sim\left[\begin{array}{cc|cc}1 & 0 & -2 & -1 \\ 0 & 1 & 3 & 2\end{array}\right] \quad A^{-1}=\left[\begin{array}{cc}-2 & -1 \\ 3 & 2\end{array}\right]$
Note that in both cases $A^{-1}=A$ and $A^{2}=I$.
79. (A) We calculate A^{-1} by row operations on

$$
\begin{aligned}
& {\left[\begin{array}{ll|ll}
4 & 2 & 1 & 0 \\
1 & 3 & 0 & 1
\end{array}\right] R_{1} \leftrightarrow R_{2} } \\
\sim & {\left[\begin{array}{rr|rr}
1 & 3 & 0 & 1 \\
4 & 2 & 1 & 0
\end{array}\right](-4) R_{1}+R_{2} \rightarrow R_{2} } \\
\sim & \sim\left[\begin{array}{rr|rr}
1 & 3 & 0 & 1 \\
0 & -10 & 1 & -4
\end{array}\right]\left(-\frac{1}{10}\right) R_{2} \rightarrow R_{2} \\
\sim & {\left[\begin{array}{rr|rr}
1 & 3 & 0 & 1 \\
0 & 1 & -\frac{1}{10} & \frac{2}{5}
\end{array}\right](-3) R_{2}+R_{1} \rightarrow R_{1} } \\
\sim & {\left[\begin{array}{rr|rr}
1 & 0 & \frac{3}{10} & -\frac{1}{5} \\
0 & 1 & -\frac{1}{10} & \frac{2}{5}
\end{array}\right] }
\end{aligned}
$$

Hence $A^{-1}=\left[\begin{array}{rr}\frac{3}{10} & -\frac{1}{5} \\ -\frac{1}{10} & \frac{2}{5}\end{array}\right]$

We calculate $\left(A^{-1}\right)^{-1}$ by row operations on

$$
\begin{aligned}
& {\left[\begin{array}{rr|rr}
\frac{3}{10} & -\frac{1}{5} & 1 & 0 \\
-\frac{1}{10} & \frac{2}{5} & 0 & 1
\end{array}\right] \frac{10}{3} R_{1} \rightarrow R_{1} } \\
\sim & {\left[\begin{array}{rr|rr}
1 & -\frac{2}{3} & \frac{10}{3} & 0 \\
-\frac{1}{10} & \frac{2}{5} & 0 & 1
\end{array}\right] \frac{1}{10} R_{1}+R_{2} \rightarrow R_{2} } \\
\sim & \sim\left[\begin{array}{rr|rr}
1 & -\frac{2}{3} & \frac{10}{3} & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & 1
\end{array}\right] 2 R_{2}+R_{1} \rightarrow R_{1} \\
\sim & \sim\left[\begin{array}{rr|rr}
1 & 0 & 4 & 2 \\
0 & \frac{1}{3} & \frac{1}{3} & 1
\end{array}\right] 3 R_{2} \rightarrow R_{2} \\
\sim & {\left[\begin{array}{lr|rr}
1 & 0 & 4 & 2 \\
0 & 1 & 1 & 3
\end{array}\right] }
\end{aligned}
$$

Hence $\left(A^{-1}\right)^{-1}=\left[\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right]$
(B) We calculate A^{-1} by row operations on

$$
\begin{aligned}
& {\left[\begin{array}{rr|rr}
5 & 5 & 1 & 0 \\
-1 & 3 & 0 & 1
\end{array}\right] R_{1} \leftrightarrow R_{2} } \\
\sim & {\left[\begin{array}{rr|rr}
-1 & 3 & 0 & 1 \\
5 & 5 & 1 & 0
\end{array}\right] 5 R_{1}+R_{2} \rightarrow R_{2} } \\
\sim & {\left[\begin{array}{rr|rr}
-1 & 3 & 0 & 1 \\
0 & 20 & 1 & 5
\end{array}\right] \frac{1}{20} R_{2} \rightarrow R_{2} } \\
\sim & {\left[\begin{array}{rr|rr}
-1 & 3 & 0 & 1 \\
0 & 1 & \frac{1}{20} & \frac{1}{4}
\end{array}\right](-3) R_{2}+R_{1} \rightarrow R_{1} } \\
\sim & {\left[\begin{array}{rr|rr}
-1 & 0 & -\frac{3}{20} & \frac{1}{4} \\
0 & 1 & \frac{1}{20} & \frac{1}{4}
\end{array}\right](-1) R_{1} \rightarrow R_{1} } \\
\sim & {\left[\begin{array}{rr|rrr}
1 & 0 & \frac{3}{20} & -\frac{1}{4} \\
0 & 1 & \frac{1}{20} & \frac{1}{4}
\end{array}\right] }
\end{aligned}
$$

$$
\text { Hence } A^{-1}=\left[\begin{array}{rr}
\frac{3}{20} & -\frac{1}{4} \\
\frac{1}{20} & \frac{1}{4}
\end{array}\right]
$$

We calculate A^{-1} by row operations on

$$
\begin{aligned}
& {\left[\begin{array}{rr|rr}
\frac{3}{20} & -\frac{1}{4} & 1 & 0 \\
\frac{1}{20} & \frac{1}{4} & 0 & 1
\end{array}\right] \frac{20}{3} R_{1} \rightarrow R_{1} } \\
\sim & \sim\left[\begin{array}{rr|rr}
1 & -\frac{5}{3} & \frac{20}{3} & 0 \\
\frac{1}{20} & \frac{1}{4} & 0 & 1
\end{array}\right]-\frac{1}{20} R_{1}+R_{2} \rightarrow R_{2} \\
\sim & {\left[\begin{array}{rr|rr}
1 & -\frac{5}{3} & \frac{20}{3} & 0 \\
0 & \frac{1}{3} & -\frac{1}{3} & 1
\end{array}\right] 5 R_{2}+R_{1} \rightarrow R_{1} } \\
\sim & {\left[\begin{array}{rr|rr}
1 & 0 & 5 & 5 \\
0 & \frac{1}{3} & -\frac{1}{3} & 1
\end{array}\right] 3 R_{2} \rightarrow R_{2} } \\
\sim & {\left[\begin{array}{rr|rr}
1 & 0 & 5 & 5 \\
0 & 1 & -1 & 3
\end{array}\right] }
\end{aligned}
$$

$$
\text { Hence }\left(A^{-1}\right)^{-1}=\left[\begin{array}{rr}
5 & 5 \\
-1 & 3
\end{array}\right]
$$

Note that in both cases the inverse of the inverse works out to be the original matrix.
81. (A) Using a graphing calculator, we enter A and B and calculate A^{-1} and B^{-1}

Then $(A B)^{-1}$ and $A^{-1} B^{-1}$ are calculated as Finally $B^{-1} A^{-1}$ is calculated as

(B) Using a graphing calculator, we enter A and B and calculate A^{-1} and B^{-1}

$\left[\begin{array}{ll} {[A]} & {\left[\begin{array}{ll} 1 & -1 \end{array}\right]} \\ \hline & 3 \end{array}\right]$	$\text { [B] } \left.\quad\left[\begin{array}{ll} 6 & 2 \\ Z & 1 \end{array}\right]\right]$
$\left[\begin{array}{lll} {[H]-1} & {\left[\begin{array}{ll} {[6} & , 2] \\ -.4 & , 2] \end{array}\right]} \end{array}\right.$	$[B]^{-1}$ $\left[\begin{array}{ll} {\left[\begin{array}{ll} -5 & -1 \\ -1 & 3 \end{array}\right]} \end{array}\right]$

83. Using the assignation numbers 1 to 27 with the letters of the alphabet and a blank as in the text, write

L E B R O N J A M E S
$\begin{array}{lllllllllll}12 & 5 & 2 & 18 & 15 & 14 & 27 & 10 & 1 & 13 & 5\end{array} 19$
and calculate
$\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right]\left[\begin{array}{cccccc}12 & 2 & 15 & 27 & 1 & 5 \\ 5 & 18 & 14 & 10 & 13 & 19\end{array}\right]=\left[\begin{array}{cccccc}61 & 96 & 115 & 131 & 68 & 110 \\ 22 & 38 & 43 & 47 & 27 & 43\end{array}\right]$
The encoded message is thus
$\begin{array}{llllllllllll}61 & 22 & 96 & 38 & 115 & 43 & 131 & 47 & 68 & 27 & 110 & 43\end{array}$
85. The inverse of matrix A is easily calculated to be $A^{-1}=\left[\begin{array}{cc}2 & -5 \\ -1 & 3\end{array}\right]$

Putting the coded message into matrix form and multiplying by A^{-1} yields:
$\left[\begin{array}{cc}2 & -5 \\ -1 & 3\end{array}\right]\left[\begin{array}{cccccccc}31 & 150 & 57 & 150 & 103 & 160 & 61 & 192 \\ 12 & 55 & 20 & 59 & 39 & 61 & 22 & 73\end{array}\right]=\left[\begin{array}{cccccccc}2 & 25 & 14 & 5 & 11 & 15 & 12 & 19 \\ 5 & 15 & 3 & 27 & 14 & 23 & 5 & 27\end{array}\right]$
This decodes to $2=5$

$$
\begin{array}{lllllllllllllll}
B & \mathrm{E} & \mathrm{Y} & \mathrm{O} & \mathrm{~N} & \mathrm{C} & \mathrm{E} & & \mathrm{~K} & \mathrm{~N} & \mathrm{O} & \mathrm{~W} & \mathrm{~L} & \mathrm{E} & \mathrm{~S}
\end{array}
$$

87. Using the assignation of numbers 1 to 27 with the letters of the alphabet and a blank as in the text, write

N E W E N G L A N D P A T R I O T
$\begin{array}{llllllllllllllllll}14 & 5 & 23 & 27 & 5 & 14 & 7 & 12 & 1 & 14 & 4 & 27 & 16 & 1 & 20 & 18 & 9 & 15 \\ 20 & 19\end{array}$
and calculate
$\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 3 \\ 2 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 2 \\ 1 & 1 & 1 & 2 & 1\end{array}\right]\left[\begin{array}{cccc}14 & 14 & 4 & 18 \\ 5 & 7 & 27 & 9 \\ 23 & 12 & 16 & 15 \\ 27 & 1 & 1 & 20 \\ 5 & 14 & 20 & 19\end{array}\right]=\left[\begin{array}{cccc}42 & 40 & 40 & 52 \\ 43 & 61 & 103 & 81 \\ 88 & 62 & 72 & 99 \\ 33 & 40 & 56 & 53 \\ 101 & 49 & 69 & 101\end{array}\right]$
The coded message is thus
$\begin{array}{lllllllllllllllllll}42 & 40 & 40 & 52 & 43 & 61 & 103 & 81 & 88 & 62 & 72 & 99 & 33 & 40 & 56 & 53 & 101 & 49 & 69 \\ 101 .\end{array}$
89. The inverse of B is calculated to be
$B^{-1}=\left[\begin{array}{rrrrr}-2 & -1 & 2 & 2 & -1 \\ 3 & 2 & -2 & -4 & 1 \\ 6 & 2 & -4 & -5 & 2 \\ -2 & -1 & 1 & 2 & 0 \\ -3 & -1 & 2 & 3 & -1\end{array}\right]$
Putting the coded message into matrix form and multiplying by B^{-1} yields
$\left[\begin{array}{rrrrr}-2 & -1 & 2 & 2 & -1 \\ 3 & 2 & -2 & -4 & 1 \\ 6 & 2 & -4 & -5 & 2 \\ -2 & -1 & 1 & 2 & 0 \\ -3 & -1 & 2 & 3 & -1\end{array}\right]\left[\begin{array}{ccccc}32 & 51 & 62 & 58 & 39 \\ 25 & 64 & 109 & 115 & 110 \\ 55 & 103 & 114 & 105 & 85 \\ 19 & 39 & 62 & 73 & 65 \\ 41 & 100 & 92 & 113 & 111\end{array}\right]=\left[\begin{array}{ccccc}18 & 18 & 27 & 12 & 1 \\ 1 & 19 & 20 & 15 & 18 \\ 9 & 27 & 8 & 19 & 11 \\ 4 & 15 & 5 & 20 & 27 \\ 5 & 6 & 27 & 27 & 27\end{array}\right]$

This decodes to
$\begin{array}{llllllllllllllllllllllll}18 & 1 & 9 & 4 & 5 & 18 & 19 & 27 & 15 & 6 & 27 & 20 & 8 & 5 & 27 & 12 & 15 & 19 & 20 & 27 & 1 & 18 & 11 & 27\end{array} 27$
R A I D E R S O F T H E L L O
91. The system to be solved, for an arbitrary return, is derived as follows:

Let $x_{1}=$ number of $\$ 20$ tickets sold
$x_{2}=$ number of $\$ 30$ tickets sold
Then $\quad x_{1}+x_{2}=10,000 \quad$ number of seats

$$
20 x_{1}+30 x_{2}=k_{2} \quad \text { return required }
$$

We solve the system by writing it as a matrix equation.
$\begin{array}{cc}A & X \\ {\left[\begin{array}{cc}1 & 1 \\ 20 & 30\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]}\end{array} \begin{gathered}B \\ {\left[\begin{array}{c}10,000 \\ k_{2}\end{array}\right]}\end{gathered}$
If A^{-1} exists, then $X=A^{-1} B$. To find A^{-1}, we perform row operations on

$\sim\left[\begin{array}{rr|rr}1 & 0 & 3 & -0.1 \\ 0 & 1 & -2 & 0.1\end{array}\right]$
Hence $A^{-1}=\left[\begin{array}{rr}3 & -0.1 \\ -2 & 0.1\end{array}\right]$
Check: $A^{-1} A=\left[\begin{array}{rr}3 & -0.1 \\ -2 & 0.1\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ 20 & 30\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
We can now solve the system as
$\begin{array}{lll}X & A^{-1} & B\end{array}$
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{rr}3 & -0.1 \\ -2 & 0.1\end{array}\right]\left[\begin{array}{c}10,000 \\ k_{2}\end{array}\right]$
If $k_{2}=240,000$ (Concert 1),
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{rr}3 & -0.1 \\ -2 & 0.1\end{array}\right]\left[\begin{array}{c}10,000 \\ 240,000\end{array}\right]=\left[\begin{array}{l}6,000 \\ 4,000\end{array}\right]$
Concert 1: 6,000 \$20 tickets and 4,000 \$30 tickets

If $k_{2}=250,000($ Concert 2$)$,
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{rr}3 & -0.1 \\ -2 & 0.1\end{array}\right]\left[\begin{array}{c}10,000 \\ 250,000\end{array}\right]=\left[\begin{array}{l}5,000 \\ 5,000\end{array}\right]$
Concert 2: 5,000 \$20 tickets and 5,000 \$30 tickets
If $k_{2}=270,000($ Concert 3),
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{rr}3 & -0.1 \\ -2 & 0.1\end{array}\right]\left[\begin{array}{c}10,000 \\ 270,000\end{array}\right]=\left[\begin{array}{l}3,000 \\ 7,000\end{array}\right]$
Concert 3: 3,000 \$20 tickets and 7,000 \$30 tickets
93. We solve the system, for arbitrary V_{1} and V_{2}, by writing it as a matrix equation.

$$
\begin{array}{ccc}
& A & J \\
{\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=}
\end{array} \begin{gathered}
B \\
{\left[\begin{array}{c}
0 \\
V_{1} \\
V_{2}
\end{array}\right]}
\end{gathered}
$$

If A^{-1} exists, then $J=A^{-1} B$. To find A^{-1}, we perform row operations on

$$
\sim\left[\begin{array}{rrr|rrr}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 1 \\
0 & 2 & -1 & -1 & 1 & 0
\end{array}\right] \stackrel{R_{2}+R_{1} \rightarrow R_{1}}{(-2) R_{2}+R_{3} \rightarrow R_{3}} \sim\left[\begin{array}{rrr|rrr}
1 & 0 & 3 & 1 & 0 & 1 \\
0 & 1 & 2 & 0 & 0 & 1 \\
0 & 0 & -5 & -1 & 1 & -2
\end{array}\right]-\frac{1}{5} R_{3} \rightarrow R_{3}
$$

$$
\sim\left[\begin{array}{rrr|rrr}
1 & 0 & 3 & 1 & 0 & 1 \\
0 & 1 & 2 & 0 & 0 & 1 \\
0 & 0 & 1 & \frac{1}{5} & -\frac{1}{5} & \frac{2}{5}
\end{array}\right] \begin{aligned}
& (-3) R_{3}+R_{1} \rightarrow R_{1} \\
& \left.(-2) R_{3}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & \frac{2}{5} & \frac{3}{5} & -\frac{1}{5} \\
0 & 1 & 0 & -\frac{2}{5} & \frac{2}{5} & \frac{1}{5} \\
0 & 0 & 1 & \frac{1}{5} & -\frac{1}{5} & \frac{2}{5}
\end{array}\right]\right) ~
\end{aligned}
$$

Hence $A^{-1}=\frac{1}{5}\left[\begin{array}{ccc}2 & 3 & -1 \\ -2 & 2 & 1 \\ 1 & -1 & 2\end{array}\right]$ Check: $A^{-1} A=\frac{1}{5}\left[\begin{array}{ccc}2 & 3 & -1 \\ -2 & 2 & 1 \\ 1 & -1 & 2\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 2\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
We can now solve the system as
$\begin{array}{cc}J \\ {\left[\begin{array}{l}I_{1} \\ I_{2} \\ I_{3}\end{array}\right]} & A^{-1} \\ \frac{1}{5}\left[\begin{array}{ccc}2 & 3 & -1 \\ -2 & 2 & 1 \\ 1 & -1 & 2\end{array}\right]\left[\begin{array}{c}0 \\ V_{1} \\ V_{2}\end{array}\right]\end{array}$
(A) $V_{1}=10 \quad V_{2}=10$
(B) $V_{1}=10 \quad V_{2}=15$
$\left[\begin{array}{l}I_{1} \\ I_{2} \\ I_{3}\end{array}\right]=\frac{1}{5}\left[\begin{array}{ccc}2 & 3 & -1 \\ -2 & 2 & 1 \\ 1 & -1 & 2\end{array}\right]\left[\begin{array}{c}0 \\ 10 \\ 10\end{array}\right]=\left[\begin{array}{l}4 \\ 6 \\ 2\end{array}\right]$
$I_{1}=4, I_{2}=6, I_{3}=2$ (amperes)
$\left[\begin{array}{l}I_{1} \\ I_{2} \\ I_{3}\end{array}\right]=\frac{1}{5}\left[\begin{array}{ccc}2 & 3 & -1 \\ -2 & 2 & 1 \\ 1 & -1 & 2\end{array}\right]\left[\begin{array}{c}0 \\ 10 \\ 15\end{array}\right]=\left[\begin{array}{l}3 \\ 7 \\ 4\end{array}\right]$
$I_{1}=3, I_{2}=7, I_{3}=4$ (amperes)
(C) $V_{1}=15 \quad V_{2}=10$
$\left[\begin{array}{l}I_{1} \\ I_{2} \\ I_{3}\end{array}\right]=\frac{1}{5}\left[\begin{array}{ccc}2 & 3 & -1 \\ -2 & 2 & 1 \\ 1 & -1 & 2\end{array}\right]\left[\begin{array}{c}0 \\ 15 \\ 10\end{array}\right]=\left[\begin{array}{l}7 \\ 8 \\ 1\end{array}\right]$
$I_{1}=7, I_{2}=8, I_{3}=1$ (amperes)
95. If the graph of $f(x)=a x^{2}+b x+c$ passes through a point, the coordinates of the point must satisfy the equation of the graph. Hence
$k_{1}=a(1)^{2}+b(1)+c$
$k_{2}=a(2)^{2}+b(2)+c$
$k_{3}=a(3)^{2}+b(3)+c$
After simplification, we obtain:
$a+b+c=k_{1}$
$4 a+2 b+c=k_{2}$
$9 a+3 b+c=k_{3}$
We solve this system, for arbitrary k_{1}, k_{2}, k_{3}, by writing it as a matrix equation.
A
$\left[\begin{array}{lll}1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=$ $\begin{gathered}B \\ {\left[\begin{array}{l}k_{1} \\ k_{2} \\ k_{3}\end{array}\right]}\end{gathered}$
If A^{-1} exists, then $X=A^{-1} B$. To find A^{-1} we perform row operations on
$\left[\begin{array}{lll|lll}1 & 1 & 1 & 1 & 0 & 0 \\ 4 & 2 & 1 & 0 & 1 & 0 \\ 9 & 3 & 1 & 0 & 0 & 1\end{array}\right] \begin{gathered}(-4) R_{1}+R_{2} \rightarrow R_{2} \sim \\ (-9) R_{1}+R_{3} \rightarrow R_{3}\end{gathered}\left[\begin{array}{rrr|rrr}1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -2 & -3 & -4 & 1 & 0 \\ 0 & -6 & -8 & -9 & 0 & 1\end{array}\right]-\frac{1}{2} R_{2} \rightarrow R_{2}$
$\sim\left[\begin{array}{rrr|rrr}1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} & 2 & -\frac{1}{2} & 0 \\ 0 & -6 & -8 & -9 & 0 & 1\end{array}\right] \underset{ }{(-1) R_{2}+R_{1} \rightarrow R_{1}} \underset{ }{6 R_{2}+R_{3} \rightarrow R_{3}} \sim \sim\left[\begin{array}{rrr|rrr}1 & 0 & -\frac{1}{2} & -1 & \frac{1}{2} & 0 \\ 0 & 1 & \frac{3}{2} & 2 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & 3 & -3 & 1\end{array}\right] \begin{aligned} & \frac{1}{2} R_{3}+R_{1} \rightarrow R_{1} \\ & \left(-\frac{3}{2}\right) R_{3}+R_{2} \rightarrow R_{2}\end{aligned}$
$\sim\left[\begin{array}{rrr|rrr}1 & 0 & 0 & \frac{1}{2} & -1 & \frac{1}{2} \\ 0 & 1 & 0 & -\frac{5}{2} & 4 & -\frac{3}{2} \\ 0 & 0 & 1 & 3 & -3 & 1\end{array}\right]$
Hence $A^{-1}=\frac{1}{2}\left[\begin{array}{ccc}1 & -2 & 1 \\ -5 & 8 & -3 \\ 6 & -6 & 2\end{array}\right]$
Check: $A^{-1} A=\frac{1}{2}\left[\begin{array}{ccc}1 & -2 & 1 \\ -5 & 8 & -3 \\ 6 & -6 & 2\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
We can now solve the system as

$$
\begin{gathered}
\left.X=\begin{array}{l}
A-1 \\
{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}
1 & -2 & 1 \\
-5 & 8 & -3 \\
6 & -6 & 2
\end{array}\right]}
\end{array} \begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right]
\end{gathered}
$$

(A) $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}1 & -2 & 1 \\ -5 & 8 & -3 \\ 6 & -6 & 2\end{array}\right]\left[\begin{array}{c}-2 \\ 1 \\ 6\end{array}\right]=\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right] a=1, b=0, c=-3$
(B) $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}1 & -2 & 1 \\ -5 & 8 & -3 \\ 6 & -6 & 2\end{array}\right]\left[\begin{array}{c}4 \\ 3 \\ -2\end{array}\right]=\left[\begin{array}{c}-2 \\ 5 \\ 1\end{array}\right] a=-2, b=5, c=1$
(C) $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}1 & -2 & 1 \\ -5 & 8 & -3 \\ 6 & -6 & 2\end{array}\right]\left[\begin{array}{c}8 \\ -5 \\ 4\end{array}\right]=\left[\begin{array}{c}11 \\ -46 \\ 43\end{array}\right] a=11, b=-46, c=43$
97. The system to be solved, for an arbitrary diet, is derived as follows:

Let $x_{1}=$ amount of $\operatorname{mix} A$
$x_{2}=$ amount of mix B
Then $0.20 x_{1}+0.10 x_{2}=k_{1}\left(k_{1}=\right.$ amount of protein $)$

$$
0.02 x_{1}+0.06 x_{2}=k_{2}\left(k_{2}=\text { amount of fat }\right)
$$

We solve the system by writing it as a matrix equation.
$\begin{array}{cc}A & X \\ {\left[\begin{array}{ll}0.20 & 0.10 \\ 0.02 & 0.06\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}k_{1} \\ k_{2}\end{array}\right]}\end{array}$
If A^{-1} exists, then $X=A^{-1} B$. To find A^{-1}, we perform row operations on
$\left[\begin{array}{cc|cc}0.20 & 0.10 & 1 & 0 \\ 0.02 & 0.06 & 0 & 1\end{array}\right] \begin{gathered}5 R_{1} \rightarrow R_{1} \\ 50 R_{2} \rightarrow R_{2}\end{gathered} \sim\left[\begin{array}{ll|lr}1 & 0.5 & 5 & 0 \\ 1 & 3 & 0 & 50\end{array}\right](-1) R_{1}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{rr|rr}1 & 0.5 & 5 & 0 \\ 0 & 2.5 & -5 & 50\end{array}\right] 0.4 R_{2} \rightarrow R_{2}$
$\sim\left[\begin{array}{ll|rr}1 & 0.5 & 5 & 0 \\ 0 & 1 & -2 & 20\end{array}\right] \underset{(-0.5) R_{2}+R_{1} \rightarrow R_{1}}{\sim} \sim\left[\begin{array}{rr|rr}1 & 0 & 6 & -10 \\ 0 & 1 & -2 & 20\end{array}\right]$
Hence $A^{-1}=\left[\begin{array}{cc}6 & -10 \\ -2 & 20\end{array}\right]$ Check: $A^{-1} A=\left[\begin{array}{cc}6 & -10 \\ -2 & 20\end{array}\right]\left[\begin{array}{cc}0.20 & 0.10 \\ 0.02 & 0.06\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]$
We can now solve the system as
$\begin{array}{lll}X & A^{-1} & B\end{array}$
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{cc}6 & -10 \\ -2 & 20\end{array}\right]\left[\begin{array}{l}k_{1} \\ k_{2}\end{array}\right]$

For Diet $1, k_{1}=20$ and $k_{2}=6$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
6 & -10 \\
-2 & 20
\end{array}\right]\left[\begin{array}{c}
20 \\
6
\end{array}\right]=\left[\begin{array}{c}
60 \\
80
\end{array}\right]
$$

Diet 1: 60 ounces Mix A and 80 ounces Mix B

For Diet $2, k_{1}=10$ and $k_{2}=4$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
6 & -10 \\
-2 & 20
\end{array}\right]\left[\begin{array}{c}
10 \\
4
\end{array}\right]=\left[\begin{array}{l}
20 \\
60
\end{array}\right]
$$

Diet 2: 20 ounces Mix A and 60 ounces Mix B

For Diet $3, k_{1}=10$ and $k_{2}=6$
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{cc}6 & -10 \\ -2 & 20\end{array}\right]\left[\begin{array}{c}10 \\ 6\end{array}\right]=\left[\begin{array}{c}0 \\ 100\end{array}\right]$
Diet 3: 0 ounces Mix A and 100 ounces Mix B

Section 10-5

1. One is a matrix, the other is a determinant.
2. A minor is a determinant obtained by crossing out row i and column j of a larger determinant. A cofactor is $(-1)^{i+j}$ times the minor of the element in row i, column j.
3. The system does not have a unique solution; it is either inconsistent or dependent.
4. Yes, Cramer's method can be used, but doing it by hand is tedious.
5. $\left|\begin{array}{ll}5 & 4 \\ 2 & 3\end{array}\right|=5 \cdot 3-2 \cdot 4=7$
6. $\left|\begin{array}{rr}3 & -7 \\ -5 & 6\end{array}\right|=3 \cdot 6-(-5)(-7)=-17$
7. $\left|\begin{array}{rr}4.3 & -1.2 \\ -5.1 & 3.7\end{array}\right|=(4.3)(3.7)-(-5.1)(-1.2)=9.79$
8. $D=\left|\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right|=1 ; x=\frac{\left|\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right|}{D}=\frac{5}{1}=5 ; y=\frac{\left|\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right|}{D}=\frac{-2}{1}=-2$
9. $D=\left|\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right|=1 ; x=\frac{\left|\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right|}{D}=\frac{1}{1}=1 ; y=\frac{\left|\begin{array}{ll}2 & 1 \\ 5 & 2\end{array}\right|}{D}=\frac{-1}{1}=-1$
10. $D=\left|\begin{array}{rr}2 & -1 \\ -1 & 3\end{array}\right|=5 ; x=\frac{\left|\begin{array}{rr}-3 & -1 \\ 3 & 3\end{array}\right|}{D}=\frac{-6}{5}=-\frac{6}{5} ; y=\frac{\left|\begin{array}{rr}2 & -3 \\ -1 & 3\end{array}\right|}{D}=\frac{3}{5}$
11. $D=\left|\begin{array}{rr}4 & -3 \\ 3 & 2\end{array}\right|=17 ; x=\frac{\left|\begin{array}{rr}4 & -3 \\ -2 & 2\end{array}\right|}{D}=\frac{2}{17} ; y=\frac{\left|\begin{array}{rr}4 & 4 \\ 3 & -2\end{array}\right|}{D}=\frac{-20}{17}=-\frac{20}{17}$
12.

$\left|\begin{array}{ccc}5 & -1 & -3 \\ 3 & 4 & 6 \\ 6 & -2 & 8\end{array}\right|=\left|\begin{array}{cc}4 & 6 \\ -2 & 8\end{array}\right|$
25. $\left|\begin{array}{ccc}5 & -1 & -3 \\ 3 & 4 & 6 \\ 0 & -2 & 8\end{array}\right|=\left|\begin{array}{ll}5 & -1 \\ 0 & -2\end{array}\right|$
27. $(-1)^{1+1}\left|\begin{array}{rr}4 & 6 \\ -2 & 8\end{array}\right|=(-1)^{2}[4 \cdot 8-(-2) 6]=44$
29. $(-1)^{2+3}\left|\begin{array}{ll}5 & -1 \\ 0 & -2\end{array}\right|=(-1)^{5}[5(-2)-0(-1)]=10$
31. We expand by row 1

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 4 & 3 \\
5 & -2 & 1
\end{array}\right| & =a_{11}\left(\operatorname{cofactor~of~} a_{11}\right)+a_{12}\left(\operatorname{cofactor} \text { of } a_{12}\right)+a_{13}\left(\operatorname{cofactor~of~} a_{13}\right) \\
& =1(-1)^{1+1}\left|\begin{array}{rr}
4 & 3 \\
-2 & 1
\end{array}\right|+0(/)+0(\searrow)
\end{aligned}
$$

It is unnecessary to evaluate these since they are multiplied by 0.

$$
=(-1)^{2}[4 \cdot 1-(-2) 3]=10
$$

33. We expand by column 1

$$
\begin{aligned}
\left|\begin{array}{rrr}
0 & 1 & 5 \\
3 & -7 & 6 \\
0 & -2 & -3
\end{array}\right| & =a_{11}\left(\text { cofactor of } a_{11}\right)+a_{21}\left(\text { cofactor of } a_{21}\right)+a_{31}\left(\text { cofactor of } a_{31}\right) \\
& =0(\quad)+3(-1)^{2+1}\left|\begin{array}{rr}
1 & 5 \\
-2 & -3
\end{array}\right|+0(\searrow)
\end{aligned}
$$

It is unnecessary to evaluate these since they are multiplied by 0 .

$$
=3(-1)^{3}[1(-3)-(-2) 5]=-21
$$

Common Error: Neglecting the sign of the cofactor. The cofactor is often called the "signed" minor.
35. We expand by column 2
$\left|\begin{array}{rrr}-1 & 2 & -3 \\ -2 & 0 & -6 \\ 4 & -3 & 2\end{array}\right|=a_{12}\left(\right.$ cofactor of $\left.a_{12}\right)+a_{22}\left(\right.$ cofactor of $\left.a_{22}\right)+a_{32}\left(\right.$ cofactor of $\left.a_{32}\right)$

$$
=2(-1)^{1+2}\left|\begin{array}{rr}
-2 & -6 \\
4 & 2
\end{array}\right|+0(/ \quad)+(-3)(-1)^{3+2}\left|\begin{array}{ll}
-1 & -3 \\
-2 & -6
\end{array}\right|
$$

It is unnecessary to evaluate this since it's multiplied by zero.

$$
=2(-1)^{3}[(-2) 2-4(-6)]+(-3)(-1)^{5}[(-1)(-6)-(-2)(-3)]=(-2)(20)+3(0)=-40
$$

37. We expand by the first row

$$
\begin{aligned}
\left|\begin{array}{rrr}
1 & 4 & 1 \\
1 & 1 & -2 \\
2 & 1 & -1
\end{array}\right| & =a_{11}\left(\text { cofactor of } a_{11}\right)+a_{12}\left(\operatorname{cofactor} \text { of } a_{12}\right)+a_{13}\left(\text { cofactor of } a_{13}\right) \\
& =1(-1)^{1+1}\left|\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right|+4(-1)^{1+2}\left|\begin{array}{ll}
1 & -2 \\
2 & -1
\end{array}\right|+1(-1)^{1+3}\left|\begin{array}{cc}
1 & 1 \\
2 & 1
\end{array}\right| \\
& =(-1)^{2}[1(-1)-1(-2)]+4(-1)^{3}[1(-1)-2(-2)]+(-1)^{4}[1 \cdot 1-2 \cdot 1]=1+(-12)+(-1)=-12
\end{aligned}
$$

39. We expand by the first row

$$
\begin{aligned}
\left|\begin{array}{rrr}
1 & 4 & 3 \\
2 & 1 & 6 \\
3 & -2 & 9
\end{array}\right| & =a_{11}\left(\operatorname{cofactor} \text { of } a_{11}\right)+a_{12}\left(\operatorname{cofactor} \text { of } a_{12}\right)+a_{13}\left(\operatorname{cofactor} \text { of } a_{13}\right) \\
& =1(-1)^{1+1}\left|\begin{array}{cc}
1 & 6 \\
-2 & 9
\end{array}\right|+4(-1)^{1+2}\left|\begin{array}{cc}
2 & 6 \\
3 & 9
\end{array}\right|+3(-1)^{1+3}\left|\begin{array}{cc}
2 & 1 \\
3 & -2
\end{array}\right| \\
& =(-1)^{2}[1 \cdot 9-(-2) 6]+4(-1)^{3}[2 \cdot 9-3 \cdot 6]+3(-1)^{4}[2(-2)-1 \cdot 3]=21+0-21=0
\end{aligned}
$$

41. $\quad D=\left|\begin{array}{rr}0.9925 & -0.9659 \\ 0.1219 & 0.2588\end{array}\right|=0.37460$
$x=\frac{\left|\begin{array}{rr}0 & -0.9659 \\ 2,500 & 0.2588\end{array}\right|}{D}=\frac{2,414.75}{0.37460}=6,400$ to two significant digits
$y=\frac{\left|\begin{array}{lr}0.9925 & 0 \\ 0.1219 & 2,500\end{array}\right|}{D}=\frac{2,481.25}{0.37460}=6,600$ to two significant digits
42. $\quad D=\left|\begin{array}{rr}0.9954 & -0.9942 \\ 0.0958 & 0.1080\end{array}\right|=0.20275$
$x=\frac{\left|\begin{array}{rr}0 & -0.9942 \\ 155 & 0.1080\end{array}\right|}{D}=\frac{154.10}{0.20275}=760$ to two significant digits
$y=\frac{\left|\begin{array}{rr}0.9954 & 0 \\ 0.0958 & 155\end{array}\right|}{D}=\frac{154.29}{0.20275}=760$ to two significant digits
43. $D=\left|\begin{array}{rrr}1 & 1 & 0 \\ 0 & 2 & 1 \\ -1 & 0 & 1\end{array}\right|=1 ; x=\frac{\left|\begin{array}{rrr}0 & 1 & 0 \\ -5 & 2 & 1 \\ -3 & 0 & 1\end{array}\right|}{D}=\frac{2}{1}=2 ; y=\frac{\left|\begin{array}{rrr}1 & 0 & 0 \\ 0 & -5 & 1 \\ -1 & -3 & 1\end{array}\right|}{D}=\frac{-2}{1}=-2 ; z=\frac{\left|\begin{array}{rrr}1 & 1 & 0 \\ 0 & 2 & -5 \\ -1 & 0 & -3\end{array}\right|}{D}=\frac{-1}{1}=-1$
44. $D=\left|\begin{array}{rrr}1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 1\end{array}\right|=3 ; x=\frac{\left|\begin{array}{rrr}1 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & -1 & 1\end{array}\right|}{D}=\frac{4}{3} ; y=\frac{\left|\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1\end{array}\right|}{D}=\frac{-1}{3}=-\frac{1}{3} ; z=\frac{\left|\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 1\end{array}\right|}{D}=\frac{2}{3}$
45. $D=\left|\begin{array}{rrr}0 & 3 & 1 \\ 1 & 0 & 2 \\ 1 & -3 & 0\end{array}\right|=3 ; x=\frac{\left|\begin{array}{rrr}-1 & 3 & 1 \\ 3 & 0 & 2 \\ -2 & -3 & 0\end{array}\right|}{D}=\frac{-27}{3}=-9 ; y=\frac{\left|\begin{array}{rrr}0 & -1 & 1 \\ 1 & 3 & 2 \\ 1 & -2 & 0\end{array}\right|}{D}=\frac{-7}{3}=-\frac{7}{3}$;

$$
z=\frac{\left|\begin{array}{rrr}
0 & 3 & -1 \\
1 & 0 & 3 \\
1 & -3 & -2
\end{array}\right|}{D}=\frac{18}{3}=6
$$

51. $D=\left|\begin{array}{rrr}0 & 2 & -1 \\ 1 & -1 & -1 \\ 1 & -1 & 2\end{array}\right|=-6 ; x=\frac{\left|\begin{array}{rrr}-3 & 2 & -1 \\ 2 & -1 & -1 \\ 4 & -1 & 2\end{array}\right|}{D}=\frac{-9}{-6}=\frac{3}{2} ; y=\frac{\left|\begin{array}{rrr}0 & -3 & -1 \\ 1 & 2 & -1 \\ 1 & 4 & 2\end{array}\right|}{D}=\frac{7}{-6}=-\frac{7}{6}$;

$$
z=\frac{\left|\begin{array}{rrr}
0 & 2 & -3 \\
1 & -1 & 2 \\
1 & -1 & 4
\end{array}\right|}{D}=\frac{-4}{-6}=\frac{2}{3}
$$

53. Compute the coefficient determinant:
$D=\left|\begin{array}{ll}a & 3 \\ 2 & 4\end{array}\right|=4 a-3(2)=4 a-6$
If $D \neq 0$, there is a unique solution: $\quad 4 a-6=0$

$$
\begin{aligned}
4 a & =6 \\
a & =\frac{6}{4}=\frac{3}{2}
\end{aligned}
$$

So if $a \neq \frac{3}{2}$ there is one solution. If $a=\frac{3}{2}$ we need to use Gauss-Jordan elimination to determine the nature of the solutions after plugging in $\frac{3}{2}$ for a.

$$
\left[\begin{array}{cc|c}
\frac{3}{2} & 3 & b \\
2 & 4 & 5
\end{array}\right] \frac{2}{3} R_{1} \rightarrow R_{1} \sim\left[\begin{array}{ll|c}
1 & 2 & \frac{2 b}{3} \\
2 & 4 & 5
\end{array}\right]-2 R_{1}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{cc|c}
1 & 2 & \frac{2 b}{3} \\
0 & 0 & -\frac{4 b}{3}+5
\end{array}\right]
$$

If the bottom row is all zeros, there are infinitely many solutions. If the bottom row has zero in the third position, there is no solution. We need to know when $\frac{-4 b}{3}+5=0$.

$$
\begin{array}{ll}
\frac{-4 b}{3}+5=0 & \text { So there are infinitely many solutions if } a=\frac{3}{2} \text { and } b=\frac{15}{4}, \text { and no } \\
-4 b+15=0 & \text { colutions if } a=\underline{3} \text { and } b \pm \underline{15}
\end{array}
$$

$$
-4 b=-15
$$

$$
b=\frac{15}{4}
$$

55. $x=\frac{\left|\begin{array}{rrr}-3 & -3 & 1 \\ -11 & 3 & 2 \\ 3 & -1 & -1\end{array}\right|}{\left|\begin{array}{rrr}2 & -3 & 1 \\ -4 & 3 & 2 \\ 1 & -1 & -1\end{array}\right|}=\frac{20}{5}=4$
56. $y=\frac{\left|\begin{array}{rrr}12 & 5 & 11 \\ 15 & -13 & -9 \\ 5 & 0 & 2\end{array}\right|}{\left|\begin{array}{rrr}12 & -14 & 11 \\ 15 & 7 & -9 \\ 5 & -3 & 2\end{array}\right|}=\frac{28}{14}=2$
57. $z=\frac{\left|\begin{array}{rrr}3 & -4 & 18 \\ -9 & 8 & -13 \\ 5 & -7 & 33\end{array}\right|}{\left|\begin{array}{rrr}3 & -4 & 5 \\ -9 & 8 & 7 \\ 5 & -7 & 10\end{array}\right|}=\frac{5}{2}$
58.

$2 \cdot 3 \cdot 1+6(-7)(-4)+(-1)(5)(-2)-(-4)(3)(-1)-(-2)(-7) 2-1 \cdot 5 \cdot 6=6+168+10-12-28-30=114$
63. False. $\left|\begin{array}{cc}10 & 10 \\ 0 & 0\end{array}\right|$ is a counterexample.
65. True. Expanding $\left|\begin{array}{cccc}a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44}\end{array}\right|$ by the first column, we obtain successively

$$
a_{11}\left|\begin{array}{ccc}
a_{22} & a_{23} & a_{24} \\
0 & a_{33} & a_{34} \\
0 & 0 & a_{44}
\end{array}\right|=a_{11} a_{22}\left|\begin{array}{cc}
a_{33} & a_{34} \\
0 & a_{44}
\end{array}\right|=a_{11} a_{22} a_{33} a_{44}
$$

Similarly for the determinant of an $n \times n$ upper triangular matrix, we would obtain $a_{11} a_{22} a_{33} \cdot \ldots \cdot a_{n n}$ as proposed.
67. Expanding by the first column

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& =a_{11}(-1)^{1+1}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+a_{21}(-1)^{2+1}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+a_{31}(-1)^{3+1}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right| \\
& =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{21}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+a_{31}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right| \\
& =a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{21}\left(a_{12} a_{33}-a_{32} a_{13}\right)+a_{31}\left(a_{12} a_{23}-a_{22} a_{13}\right) \\
& =a_{11} a_{22} a_{33}-a_{11} a_{32} a_{23}-a_{21} a_{12} a_{33}+a_{21} a_{32} a_{13}+a_{31} a_{12} a_{23}-a_{31} a_{22} a_{13}
\end{aligned}
$$

Expanding by the third row

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& =a_{31}(-1)^{3+1}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right|+a_{32}(-1)^{3+2}\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|+a_{33}(-1)^{3+3}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| \\
& =a_{31}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right|-a_{32}\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|+a_{33}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| \\
& =a_{31}\left(a_{12} a_{23}-a_{13} a_{22}\right)-a_{32}\left(a_{11} a_{23}-a_{13} a_{21}\right)+a_{33}\left(a_{11} a_{22}-a_{12} a_{21}\right) \\
& =a_{31} a_{12} a_{23}-a_{31} a_{13} a_{22}-a_{32} a_{11} a_{23}+a_{32} a_{13} a_{21}+a_{33} a_{11} a_{22}-a_{33} a_{12} a_{21}
\end{aligned}
$$

Comparing the two expressions, with the aid of the numbers under the terms, shows that the expressions are the same.
69. $A=\left[\begin{array}{rr}2 & 3 \\ 1 & -2\end{array}\right] \quad B=\left[\begin{array}{rr}-1 & 3 \\ 2 & 1\end{array}\right]$

We calculate $A B=\left[\begin{array}{rr}2 & 3 \\ 1 & -2\end{array}\right]\left[\begin{array}{rr}-1 & 3 \\ 2 & 1\end{array}\right]=\left[\begin{array}{rr}2(-1)+3 \cdot 2 & 2 \cdot 3+3 \cdot 1 \\ 1(-1)+(-2) 2 & 1 \cdot 3+(-2) \cdot 1\end{array}\right]=\left[\begin{array}{rr}4 & 9 \\ -5 & 1\end{array}\right]$
$\operatorname{det}(A B)=\left|\begin{array}{rr}4 & 9 \\ -5 & 1\end{array}\right|=4 \cdot 1-(-5) 9=49$ $\operatorname{det} A=\left|\begin{array}{rr}2 & 3 \\ 1 & -2\end{array}\right|=2(-2)-1 \cdot 3=-7$ $\operatorname{det} B=\left|\begin{array}{rr}-1 & 3 \\ 2 & 1\end{array}\right|=(-1) 1-2 \cdot 3=-7$
Thus, $\operatorname{det} A \operatorname{det} B=(-7)(-7)=49=\operatorname{det}(A B)$
71. (A) $D=\left|\begin{array}{ccc}1 & -4 & 9 \\ 4 & -1 & 6 \\ 1 & -1 & 3\end{array}\right|=1(-1)^{1+1}\left|\begin{array}{ll}-1 & 6 \\ -1 & 3\end{array}\right|+4(-1)^{2+1}\left|\begin{array}{ll}-4 & 9 \\ -1 & 3\end{array}\right|+1(-1)^{3+1}\left|\begin{array}{cc}-4 & 9 \\ -1 & 6\end{array}\right|$

$$
=1(-1)^{2}[(-1) 3-(-1) 6]+4(-1)^{3}[(-4) 3-(-1) 9]+1(-1)^{4}[(-4) 6-(-1) 9]=3+12-15=0
$$

Since $D=0$, the system either has no solution or infinitely many. Since $x=0, y=0, z=0$ is a solution, the second case must hold.
(B) $D=\left|\begin{array}{ccc}3 & -1 & 3 \\ 5 & 5 & -9 \\ -2 & 1 & -3\end{array}\right|=-6 \neq 0 ; x=0, y=0, z=0$ is the only solution.
73. (A) $R=x p+y q=(200-6 p+4 q) p+(300+2 p-3 q) q=200 p-6 p^{2}+4 p q+300 q+2 p q-3 q^{2}$

$$
=200 p+300 q-6 p^{2}+6 p q-3 q^{2}
$$

(B) Rewrite the demand equations as

$$
\begin{aligned}
6 p-4 q & =200-x \\
-2 p+3 q & =300-y
\end{aligned}
$$

Apply Cramer's rule: $D=\left|\begin{array}{rr}6 & -4 \\ -2 & 3\end{array}\right|=10$

$$
p=\frac{\left|\begin{array}{rr}
200-x & -4 \\
300-y & 3
\end{array}\right|}{D}=\frac{1800-3 x-4 y}{10}=-0.3 x-0.4 y+180
$$

$$
q=\frac{\left|\begin{array}{rr}
6 & 200-x \\
-2 & 300-y
\end{array}\right|}{D}=\frac{2200-2 x-6 y}{10}=-0.2 x-0.6 y+220
$$

Then

$$
\begin{aligned}
R=x p+y q & =x(-0.3 x-0.4 y+180)+y(-0.2 x-0.6 y+220) \\
& =-0.3 x^{2}-0.4 x y+180 x-0.2 x y-0.6 y^{2}+220 y \\
& =180 x+220 y-0.3 x^{2}-0.6 x y-0.6 y^{2}
\end{aligned}
$$

Note: Sections 6, 7, 8 of this chapter are not printed in the text. They are available online. Solutions follow.

Section 10-6

1. Unless each equation is linear, that is, has the form $a_{1} x_{1}+a_{2} x_{2}+\ldots . a_{n} x_{n}=b$, the system is non linear.
2. Substitution would be preferable. Solve the first equation for x in terms of y (or y in terms of x), substitute into the second equation, solve the single-variable equation that results, and plug any solutions into the first equation, to find the other variable.
3.

$$
\begin{aligned}
x^{2}+y^{2} & =169 \\
x & =-12 \\
(-12)^{2}+y^{2} & =169 \\
y^{2} & =25 \\
y & = \pm 5
\end{aligned}
$$

7. $8 x^{2}-y^{2}=16$

$$
y=2 x
$$

Substitute y from the second equation into the first equation.

$$
\begin{aligned}
8 x^{2}-(2 x)^{2} & =16 \\
8 x^{2}-4 x^{2} & =16 \\
4 x^{2} & =16 \\
x^{2} & =4 \\
x & = \pm 2
\end{aligned}
$$

For $x=2 \quad$ For $x=-2$

$$
\begin{array}{ll}
y=2(2) & y \\
y=2(-2) \\
y & =4
\end{array}
$$

Solutions: (2, 4), ($-2,-4$)
Check:

$$
\begin{array}{rrr}
\text { For }(2,4) & \text { For }(-2,-4) \\
4 \stackrel{\vee}{=} 2 \cdot 2 & -4 \stackrel{\vee}{=} 2(-2 \\
8(2)^{2}-4^{2} \stackrel{\vee}{=} 16 & 8(-2)^{2}-(-4)^{2} \stackrel{\vee}{=} 16
\end{array}
$$

11. $\begin{aligned} y^{2} & =x \\ x-2 y & =2\end{aligned}$

Solve for x in the first degree equation. $x=2 y+2$
Substitute into the second degree equation.

$$
\begin{aligned}
y^{2} & =2 y+2 \\
y^{2}-2 y-2 & =0 \\
y & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad a=1, b=-2, c=-2 \\
y & =\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-2)}}{2(1)} \\
y & =\frac{2 \pm \sqrt{12}}{2} \\
y & =1 \pm \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { For } \left.\begin{array}{rlrl}
y & =1+\sqrt{3} & \text { For } y & =1-\sqrt{3} \\
x & =2(1+\sqrt{3})+2 & x & =2(1-\sqrt{3})+2 \\
x & =4+2 \sqrt{3} \quad x=4-2 \sqrt{3}
\end{array}\right) .
\end{aligned}
$$

Solutions: $(4+2 \sqrt{3}, 1+\sqrt{3}),(4-2 \sqrt{3}, 1-\sqrt{3})$

Solution: (-12, 5), (-12, -5)
Check:

$$
-12 \stackrel{\vee}{\vee}
$$

$$
(-12)^{2}+(\pm 5)^{2} \stackrel{\vee}{=} 169
$$

9. $3 x^{2}-2 y^{2}=25$

$$
x+y=0
$$

Solve for y in the first degree equation: $y=-x$
Substitute into the second degree equation.

$$
\begin{aligned}
3 x^{2}-2(-x)^{2} & =25 \\
x^{2} & =25 \\
x & = \pm 5
\end{aligned}
$$

For $x=5 \quad$ For $x=-5$

$$
y=-5 \quad y=5
$$

Solutions: $(5,-5),(-5,5)$

Check:

$$
\begin{array}{rlr}
\text { For }(5,-5) & \text { For }(-5,5) \\
5+(-5) \stackrel{\vee}{=} 0 & (-5)+5 \stackrel{\vee}{=} 0 \\
3(5)^{2}-2(-5)^{2}=25 & 3(-5)^{2}-2(5)^{2} \stackrel{\vee}{=} 25
\end{array}
$$

From this point on we will not show the checking steps for lack of space. The student should perform these checking steps, however.
13. $2 x^{2}+y^{2}=24$

$$
x^{2}-y^{2}=-12
$$

Solve using elimination by addition. Adding, we obtain:

$$
\begin{aligned}
3 x^{2} & =12 \\
x^{2} & =4 \\
x & = \pm 2
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { For } x & =2 & \text { For } x & =-2 \\
4-y^{2} & =-12 & 4-y^{2} & =-12 \\
-y^{2} & =-16 & \text { Similarly } \\
y^{2} & =16 & y & = \pm 4 \\
y & = \pm 4 & &
\end{array}
$$

Solutions: $(2,4),(2,-4),(-2,4),(-2,-4)$
15. $x^{2}+y^{2}=10$
$16 x^{2}+y^{2}=25$
Solve using elimination by addition.
Multiply the top equation by -1 and add.

$$
\begin{aligned}
-x^{2}-y^{2} & =-10 \\
16 x^{2}+y^{2} & =25 \\
\hline 15 x^{2} & =15 \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

17. $x y-4=0$
$x-y=2$
Solve for x in the first degree equation.
$x=y+2$
Substitute into the second degree equation

$$
\begin{aligned}
& (y+2) y-4=0 \\
& y^{2}+2 y-4=0 \\
& y=\frac{-b \pm \sqrt{b^{2}-4 a c} \quad a=1, b=2, c=-4}{2 a} \\
& y=\frac{-2 \pm \sqrt{(2)^{2}-4(1)(-4)}}{2(1)} \\
& y=\frac{-2 \pm \sqrt{20}}{2} \\
& y=-1 \pm \sqrt{5}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { For } x & =1 & \text { For } x & =-1 \\
1+y^{2} & =10 & 1+y^{2} & =10 \\
y^{2} & =9 & y & = \pm 3 \\
y & = \pm 3 &
\end{array}
$$

Solutions: $(1,3),(1,-3),(-1,3),(-1,-3)$
19. $x^{2}+2 y^{2}=6$

$$
x y=2
$$

Solve for y in the second equation
$y=\frac{2}{x}$
Substitute into the first equation

$$
\begin{aligned}
x^{2}+2\left(\frac{2}{x}\right)^{2} & =6 \\
x^{2}+\frac{8}{x^{2}} & =6 \quad x \neq 0 \\
x^{2} \cdot x^{2}+x^{2} \cdot \frac{8}{x^{2}} & =6 x^{2} \\
x^{4}+8 & =6 x^{2} \\
x^{4}-6 x^{2}+8 & =0 \\
\left(x^{2}-2\right)\left(x^{2}-4\right) & =0 \\
(x-\sqrt{2})(x+\sqrt{2})(x-2)(x+2) & =0
\end{aligned}
$$

$$
\text { For } \begin{array}{rlrl}
y & =-1+\sqrt{5} & \text { For } y & =-1-\sqrt{5} \\
x & =-1+\sqrt{5}+2 & x & =-1-\sqrt{5}+2 \\
x & =1+\sqrt{5} & x & =1-\sqrt{5}
\end{array}
$$

$$
x=\sqrt{2},-\sqrt{2}, 2,-2
$$

Solutions: $(1+\sqrt{5},-1+\sqrt{5}),(1-\sqrt{5},-1-\sqrt{5})$
21. $2 x^{2}+3 y^{2}=-4$
$4 x^{2}+2 y^{2}=8$
Solve using elimination by addition.
Multiply the second equation by $-\frac{1}{2}$ and add.

$$
\begin{array}{rl}
2 x^{2}+3 y^{2} & =-4 \\
-2 x^{2}-y^{2} & =-4 \\
2 y^{2} & =-8 \\
y^{2} & =-4 \\
y & = \pm 2 i \\
\text { For } y=2 i & \\
2 x^{2}+3(2 i)^{2}=-4 & \text { For } y=-2 i \\
2 x^{2}-12=-4 & 2 x^{2}+3(-2 i)^{2}=-4 \\
2 x^{2}=8 & \text { Similarly } \\
x^{2}=4 & \\
x= \pm 2 &
\end{array}
$$

Solutions: $(2,2 i),(-2,2 i),(2,-2 i),(-2,-2 i)$
25. $x^{2}+y^{2}=9$

Solutions: $(\sqrt{2}, \sqrt{2}),(-\sqrt{2},-\sqrt{2}),(2,1),(-2,-1)$
23. $x^{2}-y^{2}=2$

$$
y^{2}=x
$$

Substitute y^{2} from the second equation into the first equation.

$$
\begin{aligned}
x^{2}-x & =2 \\
x^{2}-x-2 & =0 \\
(x-2)(x+1) & =0 \\
x & =2,-1
\end{aligned}
$$

$$
\text { For } \begin{aligned}
x & =2 & \text { For } x & =-1 \\
y^{2} & =2 & y^{2} & =-1 \\
y & = \pm \sqrt{2} & y & = \pm i
\end{aligned}
$$

Solutions: $(2, \sqrt{2}),(2,-\sqrt{2}),(-1, i),(-1,-i)$
27. $x^{2}-y^{2}=3$

$$
x^{2}=9-2 y
$$

Substitute x^{2} from the second equation into the first equation.

$$
\begin{aligned}
& 9-2 y+y^{2}=9 \\
& y^{2}-2 y=0 \\
& y(y-2)=0 \\
& y=0,2 \\
& \text { For } y=0 \quad \text { For } y=2 \\
& x^{2}=9-2(0) \quad x^{2}=9-2(2) \\
& x^{2}=9 \quad x^{2}=5 \\
& x= \pm 3 \quad x= \pm \sqrt{5}
\end{aligned}
$$

Solutions: $(3,0),(-3,0),(\sqrt{5}, 2),(-\sqrt{5}, 2)$
29. $y=5-x^{2}$
$y=2-2 x$
Substitute y from the first equation into the second equation.

$$
\begin{aligned}
5-x^{2} & =2-2 x \\
0 & =x^{2}-2 x-3 \\
0 & =(x-3)(x+1) \\
x & =3,-1
\end{aligned}
$$

For $x=3$
$y=2-2(3)$
$y=-4$
Solutions: (3, -4), ($-1,4$)
33. $y=x^{2}-6 x+9$
$y=5-x$
Substitute y from the first equation into the second equation.

$$
\begin{aligned}
x^{2}-6 x+9 & =5-x \\
x^{2}-5 x+4 & =0 \\
(x-1)(x-4) & =0 \\
x & =1,4
\end{aligned}
$$

For $x=1$

$$
y=5-1
$$

$$
\text { For } x=4
$$

$y=5-4$

$$
y=4
$$

$y=1$

Solutions: (1, 4), (4, 1)

$$
x y=2
$$

Solve for y in the second equation.
$y=\frac{2}{x}$
Substitute into the first equation:

$$
\begin{array}{rlrl}
x^{2}-\left(\frac{2}{x}\right)^{2} & =3 & \\
x^{2}-\frac{4}{x^{2}} & =3 \quad x \neq 0 \\
x^{4}-4 & =3 x^{2} & \\
x^{4}-3 x^{2}-4 & =0 \\
\left(x^{2}-4\right)\left(x^{2}+1\right) & =0 \\
x^{2}-4=0 & x^{2}+1 & =0 \\
x^{2}=4 & x^{2} & =-1 \\
x= & x 2 & x & = \pm i
\end{array}
$$

For $x=2 \quad$ For $x=-2 \quad$ For $x=i \quad$ For $x=-i$

$$
\begin{array}{llll}
y=\frac{2}{2} & y=\frac{2}{-2} & y=\frac{2}{i} & y=\frac{2}{-i} \\
y=1 & y=-1 & y=-2 i & y=2 i
\end{array}
$$

Solutions: $(2,1),(-2,-1),(i,-2 i),(-i, 2 i)$
31. $y=x^{2}-x$
$y=2 x$
Substitute y from the first equation into the second equation.

$$
\begin{aligned}
x^{2}-x & =2 x \\
x^{2}-3 x & =0 \\
x(x-3) & =0
\end{aligned}
$$

$$
x=0,3
$$

$$
\begin{array}{rlrl}
\text { For } x & =0 & \text { For } x & =3 \\
y & =2(0) & y & =2(3) \\
y & =0 & y & =6
\end{array}
$$

Solutions: $(0,0),(3,6)$
35. $\begin{aligned} & y=8+4 x-x^{2} \\ & y=x^{2}-2 x\end{aligned}$

Substitute y from the first equation into the second equation.

$$
\begin{aligned}
8+4 x-x^{2} & =x^{2}-2 x \\
0 & =2 x^{2}-6 x-8 \\
0 & =x^{2}-3 x-4 \\
0 & =(x-4)(x+1) \\
x & =4,-1
\end{aligned}
$$

$$
\text { For } \begin{aligned}
x & =4 \\
y & =4^{2}-2(4) \\
y & =8
\end{aligned}
$$

$$
\text { For } x=-1
$$

Solutions: $(4,8),(-1,3)$
37. (A) The lines are tangent to the circle.
(B) To find values of b such that

$$
\begin{aligned}
& x^{2}+y^{2}=5 \\
& 2 x-y=b
\end{aligned}
$$

has exactly one solution, we solve the system for arbitrary b. Solve for y in the second equation. $y=2 x-b$
Substitute into the first equation:

$$
\begin{array}{r}
x^{2}+(2 x-b)^{2}=5 \\
x^{2}+4 x^{2}-4 b x+b^{2}=5 \\
5 x^{2}-4 b x+b^{2}-5=0
\end{array}
$$

This quadratic equation will have one solution if the discriminant $B^{2}-4 A C=(-4 b)^{2}-4(5)\left(b^{2}-5\right)$ is equal to 0 .

This will occur when

$$
\begin{aligned}
16 b^{2}-20 b^{2}+100 & =0 \\
-4 b^{2}+100 & =0 \\
b^{2} & =25 \\
b & = \pm 5
\end{aligned}
$$

Consider $b=5$
Then the solution of the system

$$
\begin{aligned}
& x^{2}+y^{2}=5 \\
& 2 x-y=5
\end{aligned}
$$

will be given by solving
$5 x^{2}-4 b x+b^{2}-5=0$
for $b=5$.

$$
\begin{array}{r}
5 x^{2}-4 \cdot 5 x+5^{2}-5=0 \\
5 x^{2}-20 x+20=0 \\
5(x-2)^{2}=0 \\
x-2=0 \\
x=2
\end{array}
$$

Consider $b=-5$
Then the solution of the system

$$
\begin{aligned}
x^{2}+y^{2} & =5 \\
2 x-y & =-5
\end{aligned}
$$

will be given by solving
$5 x^{2}-4 b x+b^{2}-5=0$
for $b=-5$.

Since

$$
\begin{aligned}
2 x-y & =5 \\
2 \cdot 2-y & =5 \\
y & =-1
\end{aligned}
$$

The intersection point is $(2,-1)$ for $b=5$.

$$
\begin{aligned}
5 x^{2}-4(-5) x+(-5)^{2}-5 & =0 \\
5 x^{2}+20 x+20 & =0 \\
5(x+2)^{2} & =0 \\
x+2 & =0 \\
x & =-2
\end{aligned}
$$

Since

$$
\begin{aligned}
2 x-y & =-5 \\
2(-2)-y & =-5 \\
y & =1
\end{aligned}
$$

The intersection point is $(-2,1)$ for $b=-5$.
(C) The line $x+2 y=0$ is perpendicular to all the lines in the family and intersects the circle at the intersection points found in part B, since this line passes through the center of the circle and thus includes a diameter of the circle, which is perpendicular to the tangent line at their mutual point of intersection with the circle. Solving the system $x^{2}+y^{2}=5, x+2 y=0$ would determine the intersection points.
39. $2 x+5 y+7 x y=8$
41. $x^{2}-2 x y+y^{2}=1$

$$
x y-3=0
$$

Solve for y in the second equation.
$x y=3$
$y=\frac{3}{x}$
Substitute into the first equation.

$$
\begin{aligned}
2 x+5\left(\frac{3}{x}\right)+7 x\left(\frac{3}{x}\right) & =8 \\
2 x+\frac{15}{x}+21 & =8 \quad x \neq 0 \\
2 x^{2}+15+21 x & =8 x \\
2 x^{2}+13 x+15 & =0 \\
(2 x+3)(x+5) & =0 \\
x & =-\frac{3}{2},-5
\end{aligned}
$$

For $x=-\frac{3}{2} \quad$ For $x=-5$

$$
\begin{array}{ll}
y=3 \div\left(-\frac{3}{2}\right) & y=\frac{3}{-5} \\
y=-2 & y=-\frac{3}{5}
\end{array}
$$

Solutions: $\left(-\frac{3}{2},-2\right),\left(-5,-\frac{3}{5}\right)$

$$
x-2 y=2
$$

Solve for x in terms of y in the first-degree equation.
$x=2 y+2$
Substitute into the second-degree equation.

$$
\begin{aligned}
(2 y+2)^{2}-2(2 y+2) y+y^{2} & =1 \\
4 y^{2}+8 y+4-4 y^{2}-4 y+y^{2} & =1 \\
y^{2}+4 y+3 & =0 \\
(y+1)(y+3) & =0 \\
y & =-1,-3
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { For } y & =-1 & \text { For } y & =-3 \\
x & =2(-1)+2 & x & =2(-3)+2 \\
& =0 & & =-4
\end{array}
$$

43. $2 x^{2}-x y+y^{2}=8$

$$
x^{2}-y^{2}=0
$$

Factor the left side of the equation that has a zero constant term.

$$
\begin{aligned}
(x-y)(x+y) & =0 & & \quad \text { Common Error: } \\
x & =y \text { or } x=-y & & \text { It is incorrect to replace } x^{2}-y^{2}=0 \text { or } x^{2}=y^{2} \text { by } x=y .
\end{aligned}
$$

This neglects the possibility $x=-y$.
Thus, the original system is equivalent to the two systems

$$
\begin{array}{rlrl}
2 x^{2}-x y+y^{2} & =8 & 2 x^{2}-x y+y^{2} & =8 \\
x & =y & x & =-y
\end{array}
$$

These systems are solved by substitution.
First system:

$$
\begin{aligned}
2 x^{2}-x y+y^{2} & =8 \\
x & =y \\
2 y^{2}-y y+y^{2} & =8 \\
2 y^{2} & =8 \\
y^{2} & =4 \\
y & = \pm 2
\end{aligned}
$$

Second system:

$$
\begin{aligned}
2 x^{2}-x y+y^{2} & =8 \\
x & =-y \\
2(-y)^{2}-(-y) y+y^{2} & =8 \\
2 y^{2}+y^{2}+y^{2} & =8 \\
4 y^{2} & =8 \\
y^{2} & =2 \\
y & = \pm \sqrt{2}
\end{aligned}
$$

For $y=2$
For $y=-2$
For $y=\sqrt{2}$
$x=-\sqrt{2}$
For $y=-\sqrt{2}$
$x=\sqrt{2}$

Solutions: $(2,2),(-2,-2),(-\sqrt{2}, \sqrt{2}),(\sqrt{2},-\sqrt{2})$
45.

$$
\begin{array}{r}
x^{2}+x y-3 y^{2}=3 \\
x^{2}+4 x y+3 y^{2}=0
\end{array}
$$

Factor the left side of the equation that has a zero constant term.
$(x+y)(x+3 y)=0$

$$
x=-y \text { or } x=-3 y
$$

Thus the original system is equivalent to the two systems

$$
\begin{array}{rlrl}
x^{2}+x y-3 y^{2} & =3 & x^{2}+x y-3 y^{2} & =3 \\
x & =-y & x & =-3 y
\end{array}
$$

These systems are solved by substitution.
First system:

$$
\begin{aligned}
x^{2}+x y-3 y^{2} & =3 \\
x & =-y \\
(-y)^{2}+(-y) y-3 y^{2} & =3 \\
y^{2}-y^{2}-3 y^{2} & =3 \\
-3 y^{2} & =3 \\
y^{2} & =-1 \\
y & = \pm i
\end{aligned}
$$

Second system:

$$
\begin{aligned}
x & =-3 y
\end{aligned}
$$

$$
(-3 y)^{2}+(-3 y) y-3 y^{2}=3
$$

$$
9 y^{2}-3 y^{2}-3 y^{2}=3
$$

$$
3 y^{2}=3
$$

$$
y^{2}=1
$$

$$
\text { For } y=-i
$$

For $y=1$
$x=-3$

$$
x^{2}+x y-3 y^{2}=3
$$

For $y=i \quad$ For $y=-i$

$$
x=-i \quad x=i
$$

Solutions: $(-i, i),(i,-i),(-3,1),(3,-1)$
47. Before we can enter these equations in our graphing calculator, we must solve for y :

$$
\begin{array}{rlrl}
-x^{2}+2 x y+y^{2} & =1 & 3 x^{2}-4 x y+y^{2} & =2 \\
y^{2}+2 x y-1-x^{2} & =0 & y^{2}-4 x y+3 x^{2}-2 & =0
\end{array}
$$

Applying the quadratic formula to each equation, we have

$$
\begin{array}{ll}
y=\frac{-2 x \pm \sqrt{4 x^{2}-4\left(-1-x^{2}\right)}}{2} & y=\frac{4 x \pm \sqrt{16 x^{2}-4\left(3 x^{2}-2\right)}}{2} \\
y=\frac{-2 x \pm \sqrt{8 x^{2}+4}}{2} & y=\frac{4 x \pm \sqrt{4 x^{2}+8}}{2} \\
y=-x \pm \sqrt{2 x^{2}+1} & y=2 x \pm \sqrt{x^{2}+2}
\end{array}
$$

Entering each of these four equations into a graphing calculator produces the graph shown at the right.
Zooming in on the four intersection points, or using a built-in intersection routine (details omitted), yields ($-1.41,-0.82$), $(-0.13,1.15),(0.13,-1.15)$, and $(1.41,0.82)$ to two decimal places.

49. Before we can enter these equations in our graphing calculator, we must solve for y :

$$
\begin{array}{rlrl}
3 x^{2}-4 x y-y^{2} & =2 & 2 x^{2}+2 x y+y^{2} & =9 \\
y^{2}+4 x y+2-3 x^{2} & =0 & y^{2}+2 x y+2 x^{2}-9 & =0
\end{array}
$$

Applying the quadratic formula to each equation, we have

$$
\begin{aligned}
& y=\frac{-4 x \pm \sqrt{16 x^{2}-4\left(2-3 x^{2}\right)}}{2} \\
& y=\frac{-4 x \pm \sqrt{28 x^{2}-8}}{2} \\
& y=-2 x \pm \sqrt{7 x^{2}-2}
\end{aligned}
$$

$$
y=\frac{-2 x \pm \sqrt{4 x^{2}-4\left(2 x^{2}-9\right)}}{2}
$$

$$
y=\frac{-2 x \pm \sqrt{36-4 x^{2}}}{2}
$$

$$
y=-x \pm \sqrt{9-x^{2}}
$$

Entering each of these four equations into a graphing calculator produces the graph shown at the right. Zooming in on the four intersection points, or using a built-in intersection routine (details omitted), yields (-$1.66,-0.84),(-0.91,3.77),(0.91,-3.77)$, and $(1.66,0.84)$ to two decimal places.

51. Before we can enter these equations in our graphing calculator, we must solve for y :

$$
\begin{array}{rr}
2 x^{2}-2 x y+y^{2}=9 & 4 x^{2}-4 x y+y^{2}+x=3 \\
y^{2}-2 x y+2 x^{2}-9 & =0
\end{array} y^{2}-4 x y+4 x^{2}+x-3=0
$$

Applying the quadratic formula to each equation, we have

$$
\begin{array}{ll}
y=\frac{2 x \pm \sqrt{4 x^{2}-4\left(2 x^{2}-9\right)}}{2} & y=\frac{4 x \pm \sqrt{16 x^{2}-4\left(4 x^{2}+x-3\right)}}{2} \\
y=\frac{2 x \pm \sqrt{36-4 x^{2}}}{2} & y=\frac{4 x \pm \sqrt{12-4 x}}{2} \\
y=x \pm \sqrt{9-x^{2}} & y=2 x \pm \sqrt{3-x}
\end{array}
$$

Entering each of these four equations into a graphing calculator produces the graph shown at the right. Zooming in on the four intersection points, or using a built-in intersection routine (details omitted), yields $(-2.96,-3.47),(-0.89,-3.76),(1.39,4.05)$, and $(2.46,4.18)$ to two decimal places.

53. Let x and y equal the two numbers. We have the system
$x+y=3$
$x y=1$
Solve the first equation for y in terms of x, then substitute into the second degree equation.

$$
\begin{aligned}
y & =3-x \\
x(3-x) & =1 \\
3 x-x^{2} & =1 \\
-x^{2}+3 x-1 & =0 \\
x^{2}-3 x+1 & =0 \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} a=1, b=-3, c=1 \\
x & =\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(1)}}{2(1)}=\frac{3 \pm \sqrt{5}}{2}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { For } x & =\frac{3+\sqrt{5}}{2} & \text { For } x & =\frac{3-\sqrt{5}}{2} \\
y & =3-x & y & =3-x \\
& =3-\frac{3+\sqrt{5}}{2} & & =3-\frac{3-\sqrt{5}}{2} \\
& =\frac{6-3-\sqrt{5}}{2} & & =\frac{6-3+\sqrt{5}}{2} \\
= & \frac{3-\sqrt{5}}{2} & & =\frac{3+\sqrt{5}}{2}
\end{array}
$$

Thus the two numbers are $\frac{1}{2}(3-\sqrt{5})$ and $\frac{1}{2}(3+\sqrt{5})$.
55. Sketch a figure. Let x and y represent the lengths of the two legs.

From the Pythagorean Theorem we have $x^{2}+y^{2}=13^{2}$

From the formula for the area of a triangle we have $\frac{1}{2} x y=30$
Thus the system of equations is $x^{2}+y^{2}=169$

$$
\frac{1}{2} x y=30
$$

Solve the second equation for y in terms of x, then substitute into the first equation.

$$
\begin{aligned}
x y & =60 \\
y & =\frac{60}{x} \\
x^{2}+\left(\frac{60}{x}\right)^{2} & =169 \\
x^{2}+\frac{3600}{x^{2}} & =169 \quad x \neq \\
x^{4}+3600 & =169 x^{2} \\
x^{4}-169 x^{2}+3600 & =0 \\
\left(x^{2}-144\right)\left(x^{2}-25\right)(x) & 0 \\
x-12)(x+12)(x-5)(x+5) & =0 \\
x & = \pm 12, \pm 5
\end{aligned}
$$

$$
x^{2}+\frac{3600}{2}=169 \quad x \neq 0 \quad \text { Discarding the negative solutions, we have } x=12 \text { or } x=5
$$

$$
\begin{array}{rlrl}
\text { For } x & =12 & \text { For } x & =5 \\
y & =\frac{60}{x} & y & =\frac{60}{x} \\
y & =5 & y & =12
\end{array}
$$

The lengths of the legs are 5 inches and 12 inches.
57. Let $x=$ width of screen.

$$
y=\text { height of screen. }
$$

From the Pythagorean Theorem, we have $x^{2}+y^{2}=(7.5)^{2}$
From the formula for the area of a rectangle we have $x y=27$
Thus the system of equations is: $\quad x^{2}+y^{2}=56.25$

$$
x y=27
$$

Solve the second equation for y in terms of x, then substitute into the first equation.

The dimensions of the screen must be 6 inches by 4.5 inches.

$$
\begin{aligned}
& y=\frac{27}{x} \\
& x^{2}+\left(\frac{27}{x}\right)^{2}=56.25 \quad x \neq 0 \\
& x^{2}+\frac{729}{x^{2}}=56.25 \quad x \neq 0 \\
& x^{4}+729=56.25 x^{2} \\
& x^{4}-56.25 x^{2}+729=0 \quad \text { quadratic in } x^{2} \\
& x^{2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad a=1, b=-56.25, c=729 \\
& x^{2}=\frac{-(-56.25) \pm \sqrt{(-56.25)^{2}-4(1)(729)}}{2(1)}=\frac{56.25 \pm 15.75}{2}=36,20.25 \\
& x=6,4.5 \text { (discarding the negative solutions) } \\
& \begin{array}{rlrl}
\text { For } x & =6 & \text { For } x & =4.5 \\
y & =\frac{27}{6}=4.5 & y & =\frac{27}{4.5}=6
\end{array}
\end{aligned}
$$

59.

Redrawing and labeling the figure as shown, we have Area of pool $=572$

$$
x y=572
$$

Area enclosed by fence $=1,152$

$$
(x+10)(y+10)=1,152
$$

We solve this system by solving for y in terms of x in the first equation, then substituting into the second equation.

$$
\begin{aligned}
y & =\frac{572}{x} \\
(x+10)\left(\frac{572}{x}+10\right) & =1,152 \\
572+10 x+\frac{5,720}{x}+100 & =1,152 \\
10 x+\frac{5,720}{x}-480 & =0 \quad x \neq 0 \\
10 x^{2}+5,720-480 x & =0 \\
x^{2}-48 x+572 & =0 \\
(x-26)(x-22) & =0 \\
x & =26,22
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { For } x & =26 & \text { For } x & =22 \\
y & =\frac{572}{26} & y & =\frac{572}{22} \\
y & =22 & y & =26
\end{array}
$$

The dimensions of the pool are 22 feet by 26 feet.
61. Let $x=$ average speed of Boat B

Then $x+5=$ average speed of Boat A
Let $y=$ time of Boat B, then $y-\frac{1}{2}=$ time of Boat A
Using Distance $=$ rate \times time , we have

$$
\begin{aligned}
& 75=x y \\
& 75=(x+5)\left(y-\frac{1}{2}\right)
\end{aligned}
$$

Note: The faster boat, A, has the shorter time. It is a common error to confuse the signs here. Another common error: if rates are expressed in miles per hour, then $y-30$ is not the correct time for boat A. Times must be expressed in hours.
Solve the first equation for y in terms of x, then substitute into the second equation.

$$
\begin{aligned}
y & =\frac{75}{x} \\
75 & =(x+5)\left(\frac{75}{x}-\frac{1}{2}\right) \\
75 & =75-\frac{1}{2} x+\frac{375}{x}-\frac{5}{2} \\
0 & =-\frac{1}{2} x+\frac{375}{x}-\frac{5}{2} \quad x \neq 0
\end{aligned}
$$

$$
\begin{aligned}
2 x(0) & =2 x\left(-\frac{1}{2} x\right)+2 x\left(\frac{375}{x}\right)-2 x\left(\frac{5}{2}\right) \\
0 & =-x^{2}+750-5 x \\
x^{2}+5 x-750 & =0 \\
(x-25)(x+30) & =0 \\
x & =25,-30
\end{aligned}
$$

Discarding the negative solution,
we have $x=25 \mathrm{mph}=$ average speed of Boat B

$$
x+5=30 \mathrm{mph}=\text { average speed of Boat } A
$$

Section 10-7

1. The graph of $y=m x+b$ is a straight line with slope m and y intercept b. The graph of $y<m x+b$ is a halfplane consisting of all points in the plane below the line. The graph of $y>m x+b$ is a half-plane consisting of all points in the plane above the line.
2. Variables representing numbers of real quantities (like tables or surfboards) cannot take on negative values. The graph of a linear inequality system with nonnegativity restrictions is in the first quadrant only.
3. Graph $2 x-3 y=6$ as a dashed line, since equality is not included in the original statement. The origin is a suitable test point.

$$
2 x-3 y<6
$$

$2(0)-3(0)=0<6$
Hence $(0,0)$ is in the solution set.
The graph is the half-plane containing $(0,0)$.
7. Graph $3 x+2 y=18$ as a solid line, since equality is included in the original statement. The origin is a suitable test point. $3(0)+2(0)=0 \geq 18$
Hence $(0,0)$ is not in the solution set.
The graph is the line $3 x+2 y=18$ and the half-plane not containing the origin.

9. Graph $y=\frac{2}{3} x+5$ as a solid line, since equality is included in the original statement. The origin is a suitable test point.
$0 \stackrel{?}{\leq}(0)+5$
$0 \leq 5$
Hence $(0,0)$ is in the solution set. The graph is the line $=\frac{2}{3} x+5$ and the half-plane containing the origin.

11. Graph $y=8$ as a dashed line, since equality is not included in the original statement. Clearly the graph consists of all points whose y-coordinates are less than 8 , that is, the lower half-plane.

13. This system is equivalent to the system
$y \geq-3$
$y<2$
and its graph is the intersection of the graphs of these inequalities.

15. $x+2 y \leq 8$
$3 x-2 y \geq 0$
Choose a suitable test point that lies on neither line, for example, $(2,0)$.
$2+2(0)=2 \leq 8 \quad$ Hence, the solution region is below the graph of $x+2 y=8$.
$3(2)-2(0)=6 \geq 0 \quad$ Hence, the solution region is below the graph of $3 x-2 y=0$.
Thus the solution region is region IV in the diagram.
17. $x+2 y \geq 8$
$3 x-2 y \geq 0$
Choose a suitable test point that lies on neither line, for example, (2,0).

$$
\begin{aligned}
2+2(0)=2 \neq 8 & \text { Hence, the solution region is above the graph of } x+2 y=8 . \\
3(2)-2(0)=6 \geq 0 & \text { Hence, the solution region is below the graph of } 3 x-2 y=0 .
\end{aligned}
$$

Thus the solution region is region I in the diagram.
19.

21.

23.

25. Choose a suitable test point that lies on none of the lines, say $(5,1)$. $5+3(1)=8 \leq 18$ Hence, the solution region is below the graph of $x+3 y=18$. $2(5)+1=11 \neq 16$ Hence, the solution region is above the graph of $2 x+y=16$. $5 \geq 0$ $1 \geq 0$
Thus the solution region is region IV in the diagram.
The corner points are the labeled points $(6,4),(8,0)$, and $(18,0)$.
27. Choose a suitable test point that lies on none of the lines, say $(5,1)$.
$5+3(1)=8 \geq 18$
Hence, the solution region is above the graph of $x+3 y=18$.
$2(5)+1=11 \neq 16 \quad$ Hence, the solution region is above the graph of $2 x+y=16$.
$5 \geq 0$
$1 \geq 0$
Thus the solution region is region I in the diagram.
The corner points are the labeled points $(0,16),(6,4)$, and $(18,0)$.
29. The solution region is bounded (contained in, for example, the circle $x^{2}+y^{2}=16$).
The corner points are obvious from the graph:

33. The solution region is bounded. Three corner points are
31. The solution region is unbounded. The corner points are obvious from the graph: $(0,4)$ and $(5,0)$.

35. The solution region is unbounded. Two corner
obvious from the graph: $(0,4),(0,0),(4,0)$. The fourth corner point is obtained by solving the system
$x+3 y=12$
$2 x+y=8$ to obtain $\left(\frac{12}{5}, \frac{16}{5}\right)$.

37. The solution region is bounded. Three corner points are obvious from the graph: $(6,0),(0,0)$, and $(0,5)$. The other corner points are obtained by solving:

$$
\begin{array}{cc}
2 x+y=12 & \text { and } \\
x+y=7 \\
x+y=7 & x+2 y=10 \\
\text { to obtain } & \text { to obtain } \\
(5,2) & (4,3)
\end{array}
$$

41. The solution region is bounded.

The corner points are obtained by solving:
$\left\{\begin{array}{c}x+y=11 \\ 5 x+y=15\end{array}\right.$ to obtain $(1,10)$
$\left\{\begin{array}{l}5 x+y=15 \\ x+2 y=12\end{array}\right.$ to obtain $(2,5)$, and
$\left\{\begin{array}{c}x+y=11 \\ x+2 y=12\end{array}\right.$ to obtain $(10,1)$
43. From the graph it should be clear that there is no point with x coordinate greater than 4 which satisfies both $3 x+2 y \geq 24$ (arrows pointing, roughly, northeast) and $3 x+y \leq 15$ (arrows pointing, roughly, southwest). The feasible region is empty.
points are obvious from the graph: $(9,0)$ and $(0,8)$. The third corner point is obtained by solving the system
$4 x+3 y=24$
$2 x+3 y=18$ to obtain $(3,4)$.

39. The solution region is unbounded. Two of the corner points are obvious from the graph:
$(16,0)$ and $(0,14)$.
The other corner points are obtained by solving:

$$
\begin{aligned}
& x+2 y=16 \text { and } x+y=12 \\
& x+y=12 \quad 2 x+y=14 \\
& \text { to obtain to obtain } \\
& (8,4) \\
& (2,10)
\end{aligned}
$$

45. The feasible region is bounded.

The corner points are obtained by solving:

$$
\begin{aligned}
& \left\{\begin{aligned}
x+y & =10 \\
3 x-2 y & =15
\end{aligned}\right. \text { to obtain (7,3) } \\
& \left\{\begin{array}{l}
3 x-2 y=15 \\
3 x+5 y=15
\end{array} \text { to obtain }(5,0),\right. \\
& \left\{\begin{aligned}
3 x+5 y & =15 \\
-5 x+2 y & =6
\end{aligned} \text { to obtain }(0,3)\right. \text {, and } \\
& \left\{\begin{aligned}
-5 x+2 y & =6 \\
x+y & =10
\end{aligned} \text { to obtain }(2,8)\right.
\end{aligned}
$$

47. The feasible region is bounded.

The corner points are obtained by solving:
$\left\{\begin{array}{l}16 x+13 y=119 \\ 12 x+16 y=101\end{array}\right.$ to obtain $(5.91,1.88)$
$\left\{\begin{aligned} 16 x+13 y & =119 \\ -4 x+3 y & =11\end{aligned}\right.$ to obtain $(2.14,6.53)$ and
$\left\{\begin{aligned} 12 x+16 y & =101 \\ -4 x+3 y & =11\end{aligned}\right.$ to obtain $(1.27,5.36)$

49. Let $x=$ number of trick skis produced per day.
$y=$ number of slalom skis produced per day
Clearly x and y must be non-negative.
Hence $x \geq 0$
$y \geq 0$
To fabricate x trick skis requires $6 x$ hours. To fabricate y slalom skis requires $4 y$ hours. 108 hours are available for fabricating; hence $6 x+4 y \leq 108$
To finish x trick skis requires $1 x$ hours.
To finish y slalom skis requires $1 y$ hours.

24 hours are available for finishing, hence
$x+y \leq 24$
(4)

Graphing the inequality system (1), (2), (3), (4), we have the diagram.
51. (A) All production schedules in the feasible region that are on the graph of $50 x+60 y=1,100$ will result in a profit of $\$ 1,100$.
(B) There are many possible choices. For example, producing 5 trick and 15 slalom skis will produce a profit of $\$ 1,150$. The graph of the line $50 x+60 y=1,150$ includes all the production schedules in the feasible region that result in a profit of $\$ 1,150$.
(C) A graphical approach would involve drawing other lines of the type $50 x+60 y=A$. The graphs of these lines include all production schedules that will result in a profit of A. Increase A until the line either intersects the feasible region only in 1 corner point or contains an edge of the feasible region. This value of A will be the maximum profit possible.
53. Clearly x and y must be non-negative.

Hence $x \geq 0$

$$
\begin{equation*}
y \geq 0 \tag{2}
\end{equation*}
$$

x cubic yards of mix A contains $20 x$ pounds of phosphoric acid.
y cubic yards of mix B contains $10 y$ pounds of phosphoric acid.
At least 460 pounds of phosphoric acid are required, hence
$20 x+10 y \geq 460$
x cubic yards of mix A contains $30 x$ pounds of nitrogen.
y cubic yards of mix B contains $30 y$ pounds of nitrogen.
At least 960 pounds of nitrogen are required, hence
$30 x+30 y \geq 960$
(4)
x cubic yards of mix A contains $5 x$ pounds of potash. y cubic yards of mix B contains $10 y$ pounds of potash.
At least 220 pounds of potash are required, hence
$5 x+10 y \geq 220$
Graphing the inequality system (1), (2), (3), (4), (5), we have the diagram:

55. Clearly x and y must be non-negative.

$$
\text { Hence } \begin{align*}
x & \geq 0 \tag{1}\\
y & \geq 0 \tag{2}
\end{align*}
$$

Each sociologist will spend 10 hours collecting data: $10 x$ hours.
Each research assistant will spend 30 hours collecting data: $30 y$ hours.
At least 280 hours must be spent collecting data; hence
$10 x+30 y \geq 280$
Each sociologist will spend 30 hours analyzing data:
$30 x$ hours.

Each research assistant will spend 10 hours analyzing
data: $10 y$ hours.
At least 360 hours must be spent analyzing data; hence
$30 x+10 y \geq 360$
Graphing the inequality system (1), (2), (3), (4), we have the diagram.

Section 10-8

1. The objective function is the quantity to be maximized or minimized.
2. The problem constraints are the limits imposed by reality.
3. The feasible region is the set of possible values of the variables under the constraints.
4. A corner point is a point where two boundaries of the feasible region intersect.
5.

Corner Point	Objective Function	
(x, y)	$z=x+y$	
$(0,12)$	12	
$(7,9)$	16	Maximum value
$(10,0)$	10	
$(0,0)$	0	

The maximum value of z on S is 16 at $(7,9)$.
11. \square
$\left.\begin{array}{|r|r|l|}\hline(x, y) & z=3 x+7 y & \\ \hline(0,12) & 84 & \text { Maximum value } \\ (7,9) & 84 & \text { Maximum value }\end{array}\right\}$ Multiple optimal solutions

The maximum value of z on S is 84 at both $(0,12)$ and $(7,9)$.
13. Plugging in zero for x, we get $z=2 y$ or $y=\frac{z}{2}$. Plugging in zero for y, we get $z=x$. So the intercepts of the line $z=x+2 y$ are $\left(0, \frac{z}{2}\right)$ and $(z, 0)$. The feasible region is shown at the right with several constant z lines drawn in. Sliding a straight edge parallel to these constant z lines in the direction of increasing z, we can see that the point in the feasible region that will intersect the constant z line for largest possible z is $(7,9)$. When $x=7$ and $y=9, z=25$.

Check: | | Corner Point | Objective Function |
| ---: | ---: | :--- |
| (x, y) | $z=x+2 y$ | |
| | $(0,12)$ | 24 |
| | | |
| $(7,9)$ | 25 | Maximum value |
| $(10,0)$ | 10 | |
| $(0,0)$ | 0 | |

The maximum value of z on S is 25 at $(7,9)$.
15. Plugging in zero for x, we get $z=2 y$ or $y=\frac{z}{2}$. Plugging in zero for y, we get $z=7 x$ or $x=\frac{z}{7}$. So the intercepts of the line $z=7 x+2 y$ are $\left(0, \frac{z}{2}\right)$ and $\left(\frac{z}{7}, 0\right)$. The feasible region is shown at the right with several constant z lines drawn in. If we slide a straight edge parallel to the constant z lines as z increases, the last point in S that will intersect our lines is $(10,0)$. When $x=10$ and $y=0, z=70$.

Check: \begin{tabular}{r|r|l|}
\hline Corner Point

(x, y) \& | Objective Function |
| ---: |
| $z=7 x+2 y$ | \&

\cline { 2 - 3 }$(0,12)$ \& 24 \&

$(7,9)$ \& 67 \&

$(10,0)$ \& 70 \& Maximum value

$(0,0)$ \& 0 \&

\hline
\end{tabular}

The maximum value of z on S is 70 at $(10,0)$.
17.

Corner Point	Objective Function	
(x, y)	$z=7 x+4 y$	
$(0,12)$	48	
$(12,0)$	84	
$(4,3)$	40	
$(0,8)$	32	Minimum value

The minimum value of z on S is 32 at $(0,8)$.
19.

Corner Point	Objective Function	
(x, y)	$3 x+8 y$	

$\left.\begin{array}{|c|c|l|}\hline(0,12) & 96 & \\ (12,0) & 36 & \text { Minimum value } \\ (4,3) & 36 & \text { Minimum value }\end{array}\right\}$ Multiple optimal solutions

The minimum value of z on S is 36 at both $(12,0)$ and $(4,3)$.
21. If $x=5$ and $y=5, z=5+2(5)=15$, so the constant-value line we need is $x+2 y=15$. The feasible region is shown at the right with the constant-value line. If we slide a straightedge parallel to this constant-value line in the direction of decreasing z (downward), the last point in T that will intersect our line is $(4,3)$. When $x=4$ and $y=3, z=10$.
Check:

Corner Point (x, y)	Objective Function $z=x+2 y$	
$(0,12)$	24	
$(12,0)$	12	
$(0,8)$	16	Minimum value
$(4,3)$	10	

The minimum value of z on T is 10 at $(4,3)$.
23. If $x=5$ and $y=5, z=5(5)+4(5)=45$, so the constant-value line we need is $5 x+4 y=45$. The feasible region is shown at the right with the constant-value line. The constant-value line appears to be parallel to the edge connecting $(0,8)$ and $(4,3)$. Thus the minimum could occur at either $(0,8)$ or $(4,3)$ when $x=0$ and $y=8, z=$ 32. When $x=4$ and $y=3, z=32$ also.

Check:

Corner Point (x, y)	Objective Function $z=5 x+4 y$	
$(0,12)$	48	
$(12,0)$	60	Minimum value
$(0,8)$	32	Minimum value
$(4,3)$	32	

The minimum value of 32 occurs at both $(0,8)$ and $(4,3)$.
25. The feasible region is graphed as follows:

The corner points $(0,5),(5,0)$ and $(0,0)$ are obvious from the graph. The corner point $(4,3)$ is obtained by solving the system $x+2 y=10$
$3 x+y=15$
We now evaluate the objective function at each corner point.

Corner Point (x, y)	Objective Function $z=3 x+2 y$	
$(0,5)$	10	
$(0,0)$	0	
$(5,0)$	15	
$(4,3)$	18	Maximum value

The maximum value of z on S is 18 at $(4,3)$.
27. The feasible region is graphed as follows:

The corner points $(4,0)$ and $(10,0)$ are obvious from the graph.
The corner point $(2,4)$ is obtained by solving the system
$x+2 y=10$
$2 x+y=8$
We now evaluate the objective function at each corner point.

Corner Point (x, y)	Objective Function $z=3 x+4 y$	
$(4,0)$	12	Minimum value
$(10,0)$	30	
$(2,4)$	22	

The minimum value of z on S is 12 at $(4,0)$.
29. The feasible region is graphed below. The corner points $(0,12),(0,0)$, and $(12,0)$ are obvious from the graph. The other corner points are obtained by solving:
$x+2 y=24 \quad$ and $x+y=14$
$x+y=14$ to obtain $(4,10) \quad 2 x+y=24$ to obtain $(10,4)$
We now evaluate the objective function at each corner point.

Corner Point (x, y)	Objective Function $z=3 x+4 y$	
$(0,12)$	48	
$(0,0)$	0	
$(12,0)$	36	
$(10,4)$	46	Maximum value

31. The feasible region is graphed as follows:

The corner points $(0,20)$ and $(20,0)$ are obvious from the graph.
The third corner point is obtained by solving:
$x+4 y=20$
$4 x+y=20$ to obtain $(4,4)$
We now evaluate the objective function at each corner point.

Corner Point (x, y)	Objective Function $z=5 x+6 y$	
$(0,20)$	120	
$(20,0)$	100	
$(4,4)$	44	Minimum value

The minimum value of z on S is 44 at $(4,4)$.
33. The feasible region is graphed as follows:

The corner points $(60,0)$ and $(120,0)$ are obvious from the graph. The other corner points are obtained by solving:

$$
x+y=60
$$

and $x+2 y=120$
$x-2 y=0$ to obtain $(40,20)$
$x-2 y=0$ to obtain $(60,30)$
We now evaluate the objective function at each corner point.

$\left.\begin{array}{|c|c|l|}\hline(x, y) & 25 x+50 y & \\ \hline(60,0) & 1,500 & \text { Minimum value } \\ (40,20) & 2,000 & \\ (60,30) & 3,000 & \text { Maximum value } \\ (120,0) & 3,000 & \text { Maximum value }\end{array}\right\}$ Multiple optimal solutions

The minimum value of z on S is 1,500 at $(60,0)$.
The maximum value of z on S is 3,000 at $(60,30)$ and $(120,0)$.
35. The feasible region is graphed as follows:

The corner points $(0,45),(0,20),(25,0)$, and $(60,0)$ are obvious from the graph shown below.
The other corner points are obtained by solving:
$3 x+4 y=240$ $y=45$ to obtain $(20,45) \quad x=60$ to obtain $(60,15)$
We now evaluate the objective function at each corner point.

Corner Point (x, y)	Objective Function25x $+15 y$	
$(0,45)$	675	
$(0,20)$	300	Minimum Value
$(25,0)$	625	
$(60,0)$	1,500	Maximum Value
$(60,15)$	1,725	
$(20,45)$	1,175	

The minimum value of z on S is 300 at $(0,20)$.
The maximum value of z on S is 1,725 at $(60,15)$.
37. The feasible region is graphed as shown at the right.

The corner point $(0,0)$ is obvious from the graph. The other corner points are obtained by solving:

$x_{1}=0$	$350 x_{1}+340 x_{2}=3762$
$275 x_{1}+322 x_{2}=3381$	$275 x_{1}+322 x_{2}=3381$
to obtain $(0,10.5)$	to obtain $(3.22,7.75)$
$350 x_{1}+340 x_{2}=3762$	$425 x_{1}+306 x_{2}=4114$
$425 x_{1}+306 x_{2}=4114$	$x_{2}=0$
to obtain $(6.62,4.25)$	to obtain $(9.68,0)$

We now evaluate the objective function at each corner point.

Corner Point $\left(x_{1}, x_{2}\right)$	Objective Function $525 x_{1}+478 x_{2}$	
$(0,0)$	0	Minimum value
$(0,10.5)$	5019	
$(3.22,7.75)$	5395	
$(6.62,4.25)$	5507	Maximum value
$(9.68,0)$	5082	

The maximum value of P is 5507 at the corner point $(6.62,4.25)$.
39. The feasible region is graphed as follows: (heavily outlined for clarity) Consider the objective function $x+y$. It should be clear that it takes on the value 2 along $x+y=2$, the value 4 along $x+y=4$, the value 7 along $x+y=7$, and so on. The maximum value of the objective function, then, on S, is 7 , which occurs at B. Graphically this occurs when the line $x+y=c$ coincides with the boundary of S. Thus to answer questions (A)-(E) we must determine values of a and b such that the appropriate line $a x+b y=c$ coincides with the boundary of S only at the specified points.

(A) The line $a x+b y=c$ must have slope negative, but greater in absolute value that that of line segment $A B, 2 x+y=10$. Therefore $a>2 b$.
(B) The line $a x+b y=c$ must have slope negative but between that of $x+3 y=15$ and $2 x+y=10$. Therefore $\frac{1}{3} b<a<2 b$.
(C) The line $a x+b y=c$ must have slope greater than that of line segment $B C, x+3 y=15$.

Therefore $a<\frac{1}{3} b$ or $b>3 a$.
(D) The line $a x+b y=c$ must be parallel to line segment $A B$, therefore $a=2 b$.
(E) The line $a x+b y=c$ must be parallel to line segment $B C$, therefore $b=3 a$.
41. We let $x=$ the number of trick skis
$y=$ the number of slalom skis
The problem constraints were
$6 x+4 y \leq 108$
$x+y \leq 24$
The non-negative constraints were $x \geq 0$
$y \geq 0$
The feasible region was graphed there.
(A) We note now: the linear objective function $P=40 x+30 y$
 represents the profit.
Three of the corner points are obvious from the graph: $(0,24),(0,0)$, and $(18,0)$. The fourth corner point is obtained by solving: $\quad 6 x+4 y=108$

$$
x+y=24 \text { to obtain }(6,18) .
$$

Summarizing: the mathematical model for this problem is: Maximize $P=40 x+30 y$

$$
\text { subject to: } 6 x+4 y \leq 108
$$

$$
x+y \leq 24
$$

$$
x, y \geq 0
$$

We now evaluate the objective function $40 x+30 y$ at each corner point.

Corner Point (x, y)	Objective Function $40 x+30 y$	
$(0,0)$	0	
$(18,0)$	720	Maximum value
$(6,18)$	780	
$(0,24)$	720	

The optimal value is 780 at the corner point $(6,18)$. Thus, 6 trick skis and 18 slalom skis should be manufactured to obtain the maximum profit of $\$ 780$.
(B) The objective function now becomes $40 x+25 y$. We evaluate this at each corner point.

Corner Point (x, y)	Objective Function $40 x+25 y$	
$(0,0)$	0	
$(18,0)$	720	Maximum value
$(6,18)$	690	
$(0,24)$	600	

The optimal value is now 720 at the corner point $(18,0)$. Thus, 18 trick skis and no slalom skis should be produced to obtain a maximum profit of $\$ 720$.
(C) The objective function now becomes $40 x+45 y$. We evaluate this at each corner point.

Corner Point	Objective Function	
(x, y)	$40 x+45 y$	
$(0,0)$	0	
$(18,0)$	720	
$(6,18)$	1,050	Maximum value
$(0,24)$	1,080	

The optimal value is now 1,080 at the corner point $(0,24)$. Thus, no trick skis and 24 slalom skis should be produced to obtain a maximum profit of $\$ 1,080$.
43. Let $x=$ number of model A trucks
$y=$ number of model B trucks
We form the linear objective function $C=15,000 x+24,000 y$
We wish to minimize C, the cost of buying x trucks @ $\$ 15,000$ and y trucks @ $\$ 24,000$, subject to the constraints.
$x+y \leq 15$ maximum number of trucks constraint
$2 x+3 y \geq 36$ capacity constraint
$x, y \geq 0$ non-negative constraints.
Solving the system of constraint inequalities graphically, we obtain the feasible region S shown in the diagram.

Next we evaluate the objective function at each corner point.

Corner Point	Objective Function	
(x, y)	$C=15,000 x+24,000 y$	
$(0,12)$	288,000	
$(0,15)$	360,000	
$(9,6)$	279,000	Minimum value

The optimal value is $\$ 279,000$ at the corner point $(9,6)$. Thus, the company should purchase 9 model A trucks and 6 model B trucks to realize the minimum cost of $\$ 279,000$.
45. (A) Let $x=$ number of tables

$$
y=\text { number of chairs }
$$

We form the linear objective function $P=90 x+25 y$
We wish to maximize P, the profit from x tables @ $\$ 90$ and y chairs @ $\$ 25$, subject to the constraints
$8 x+2 y \leq 400$ assembly department constraint
$2 x+y \leq 120$ finishing department constraint
$x, y \geq 0$ non-negative constraints
Solving the system of constraint inequalities graphically, we obtain the feasible region S^{\prime} shown in the diagram

Next we evaluate the objective function at each corner point.

Corner Point (x, y)	Objective Function $P=90 x+25 y$	
$(0,0)$	0	
$(50,0)$	4,500	
$(40,40)$	4,600	Maximum value
$(0,120)$	3,000	

The optimal value is 4,600 at the corner point $(40,40)$. Thus, the company should manufacture 40 tables and 40 chairs for a maximum profit of $\$ 4,600$.
(B) We are faced with the further condition that $y \geq 4 x$.

We wish, then, to maximize $P=90 x+25 y$ under the constraints

$$
\begin{aligned}
8 x+2 y & \leq 400 \\
2 x+y & \leq 120 \\
y & \geq 4 x \\
x, y & \geq 0
\end{aligned}
$$

The feasible region is now S^{\prime} as graphed.
Note that the new condition has the effect of excluding $(40,40)$ from the feasible region.
We now evaluate the objective function at the new corner points.

Corner Point	Objective Function	
(x, y)	$P=90 x+25 y$	
$(0,120)$	3,000	
$(0,0)$	0	
$(20,80)$	3,800	Maximum value

The optimal value is now 3,800 at the corner point $(20,80)$. Thus the company should manufacture 20 tables and 80 chairs for a maximum profit of $\$ 3,800$.
47. Let $x=$ number of gallons produced using the old process
$y=$ number of gallons produced using the new process
We form the linear objective function $P=0.6 x+0.2 y$
(A) We wish to maximize P, the profit from x gallons using the old process and y gallons using the new process, subject to the constraints

$$
\begin{aligned}
20 x+5 y & \leq 16,000 & & \text { sulfur dioxide constraint } \\
40 x+20 y & \leq 30,000 & & \text { particulate matter constraint } \\
x, y & \geq 0 & & \text { non-negative constraints }
\end{aligned}
$$

Solving the system of constraint inequalities graphically, we obtain the feasible region S shown in the diagram. Note that no corner points are determined by this (very weak) sulfur dioxide constraint.
We evaluate the objective function at each corner point.

Corner Point (x, y)	Objective Function $P=0.6 x+0.2 y$	
$(0,0)$	0	
$(0,1500)$	300	
$(750,0)$	450	Maximum value

The optimal value is 450 at the corner point $(750,0)$. Thus, the company should manufacture 750 gallons by the old process

(B) The sulfur dioxide constraint is now
$20 x+5 y \leq 11,500$.
We now wish to maximize P subject to the constraints

$$
\begin{aligned}
20 x+5 y & \leq 11,500 \\
40 x+20 y & \leq 30,000 \\
x, y & \geq 0
\end{aligned}
$$

The feasible region is now S_{1} as shown.
We evaluate the objective function at the new corner points.

Corner Point (x, y)	Objective Function $P=0.6 x+0.2 y$	
$(0,0)$	0	
$(575,0)$	345	
$(400,700)$	380	Maximum value
$(0,1500)$	300	

The optimal value is now 380 at the corner point $(400,700)$. Thus, the company should manufacture 400 gallons by the old process and 700 gallons by the new process, for a profit of $\$ 380$.
(C) The sulfur dioxide constraint is now
$20 x+5 y \leq 7,200$.
We now wish to maximize P subject to the constraints

$$
\begin{gathered}
20 x+5 y \leq 7,200 \\
40 x+20 y \leq 30,000
\end{gathered}
$$

$$
x, y \geq 0
$$

The feasible region is now S_{2} as shown.
Note that now no corner points are determined by the particulate matter constraint.
We evaluate the objective function at the new corner points.

Corner Point (x, y)	Objective Function $P=0.6 x+0.2 y$	
$(0,0)$	0	
$(360,0)$	216	
$(0,1440)$	288	Maximum value

49. (A) Let $x=$ number of bags of Brand A
$y=$ number of bags of Brand B
We form the objective function $N=6 x+7 y$
N represents the amount of nitrogen in x bags @ 6 pounds per bag and y bags @ 7 pounds per bag.
We wish to optimize N subject to the constraints
$2 x+4 y \geq 480$ phosphoric acid constraint
$6 x+3 y \geq 540$ potash constraint
$3 x+4 y \leq 620$ chlorine constraint
$x, y \geq 0$ non-negative constraints
Solving the system of constraint inequalities graphically, we obtain the feasible region S shown in the diagram.
Next we evaluate the objective function at the corner points.

Corner Point	Objective Function	
(x, y)	$N=6 x+7 y$	
$(20,140)$	1,100	
$(40,100)$	940	Minimum value
$(140,50)$	1,190	Maximum value

So the nitrogen will range from a minimum of 940 pounds when 40 bags of brand A and 100 bags of Brand B are used to a maximum of 1,190 pounds when 140 bags of brand A and 50 bags of brand B are used.

CHAPTER 10 REVIEW

1. $2 x+y=7$
$3 x-2 y=0$
We multiply the top equation by 2 and add.

$$
\begin{aligned}
4 x+2 y & =14 \\
3 x-2 y & =0 \\
\hline 7 x \quad & =14 \\
x & =2
\end{aligned}
$$

Substituting $x=2$ in the top equation, we have

$$
\begin{array}{r}
2(2)+y=7 \\
y=3
\end{array}
$$

Solution: $(2,3)$

$$
(10-1)
$$

3. $4 x-3 y=-8$

$$
-2 x+\frac{3}{2} y=4
$$

We multiply the bottom equation by 2 and add.

$$
\begin{aligned}
4 x-3 y & =-8 \\
-4 x+3 y & =8 \\
\hline 0 & =0
\end{aligned}
$$

There are infinitely many solutions. For any real number $t, 4 t-3 y=-8$, hence,
$-3 y=-4 t-8$
$y=\frac{4 t+8}{3} \quad$ Thus, $\left(t, \frac{4 t+8}{3}\right)$ is a solution for any real number t.
4. $x-3 y+z=4$
$-x+4 y-4 z=1$
E_{1}
$2 x-y+5 z=-3$
E_{2}
Add E_{1} to E_{2} to eliminate x.
Also multiply E_{1} by -2 and add to E_{3} to eliminate x.

$x-3 y+z=4$	E_{1}
$-x+4 y-4 z=1$	
$y-3 z=5$	E_{2}
$-2 x+6 y-2 z=-8$	E_{4}
$2 x-y+5 z=-3$	$(-2) E_{1}$
$5 y+3 z=-11$	E_{3}
	E_{5}

Equivalent system:

$$
\begin{aligned}
x-3 y+z & =4 \\
y-3 z & =5 \\
5 y+3 z & =-11
\end{aligned}
$$

2. $3 x-6 y=5$
$-2 x+4 y=1$
We multiply the top equation by 2 , the bottom by 3 , and add.
$6 x-12 y=10$

$-6 x+12 y$	$=3$
0	$=13$

No solution

Add E_{4} to E_{5} to eliminate z

$y-3 z$	$=5$	E_{4}
$5 y+3 z$	$=-11$	E_{5}
$6 y$	$=-6$	

Substitute $y=-1$ into E_{5} and solve for z.

$$
\begin{aligned}
5 y+3 z & =-11 \quad E_{5} \\
5(-1)+3 z & =-11 \\
z & =-2
\end{aligned}
$$

Substitute $y=-1$ and $z=-2$ into E_{1} and solve for x.

$$
\begin{aligned}
& x-3 y+z=4 \quad E_{1} \\
& x-3(-1)+(-2)=4 \\
& x=3 \\
&(3,-1,-2)
\end{aligned}
$$

6.

E_{4}
E_{5}

$$
\mu
$$

Multiply E_{4} by -2 and add to E_{5} to eliminate y.

$$
\begin{aligned}
-10 y-6 z=6 & (-2) E_{4} \\
10 y+9 z=-9 & E_{5} \\
\hline 3 z=-3 &
\end{aligned}
$$

Substitute $z=-1$ into E_{4} and solve for y.

$$
\begin{array}{rlr}
5 y+3 z & =-3 & E_{4} \\
5 y+3(-1) & =-3 & \\
y & =0
\end{array}
$$

Substitute $y=0$ and $z=-1$ into E_{2} and solve for x.

$$
\begin{aligned}
x-2 y-2 z & =4 \quad E_{2} \\
x-2(0)-2(-1) & =4 \\
x & =2
\end{aligned}
$$

(10-1)
$(2,0,-1)$
7. $R_{1} \leftrightarrow R_{2}$ means interchange Rows 1 and 2 .

$$
\left[\begin{array}{rr|r}
3 & -6 & 12 \tag{10-2}\\
1 & -4 & 5
\end{array}\right]
$$

8. $\frac{1}{3} R_{2} \rightarrow R_{2}$ means multiply Row 2 by $\frac{1}{3}$.

$$
\left[\begin{array}{ll|l}
1 & -4 & 5 \\
1 & -2 & 4
\end{array}\right]
$$

(10-1)

$$
\begin{array}{llll}
3 \\
\lceil 1 & -4 & 5\rceil
\end{array}
$$

9. $(-3) R_{1}+R_{2} \rightarrow R_{2}$ means replace Row 2 by itself plus -3 times Row 1. $\left.\begin{array}{rr|r}1 & -4 & 5 \\ 0 & 6 & -3\end{array}\right]$
(10-1)
10. $\begin{aligned} x_{1}-x_{2} & =4 \\ 0 & =1\end{aligned}$

No solution
10. $x_{1}=4$
$x_{2}=-7$
The solution is $(4,-7)$
12. $x_{1}-x_{2}=4$

$$
0=0
$$

Solution: $x_{2}=t$

$$
x_{1}=x_{2}+4=t+4
$$

Thus $x_{1}=t+4, x_{2}=t$ is the solution, for t any real number.
13. $A B=\left[\begin{array}{rr}4 & -2 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}-1 & 5 \\ -4 & 6\end{array}\right]=\left[\begin{array}{ll}4(-1)+(-2)(-4) & 4 \cdot 5+(-2) 6 \\ 0(-1)+3(-4) & 0 \cdot 5+3 \cdot 6\end{array}\right]=\left[\begin{array}{rr}4 & 8 \\ -12 & 18\end{array}\right]$
14. $C D=\left[\begin{array}{ll}-1 & 4\end{array}\right]\left[\begin{array}{r}3 \\ -2\end{array}\right]=[(-1) 3+4(-2)]=[-11]$
15. $C B=\left[\begin{array}{ll}-1 & 4\end{array}\right]\left[\begin{array}{ll}-1 & 5 \\ -4 & 6\end{array}\right]=\left[\begin{array}{ll}(-1)(-1)+4(-4) & (-1) 5+4 \cdot 6\end{array}\right]=\left[\begin{array}{ll}-15 & 19\end{array}\right]$
16. $A D=\left[\begin{array}{rr}4 & -2 \\ 0 & 3\end{array}\right]\left[\begin{array}{r}3 \\ -2\end{array}\right]=\left[\begin{array}{l}4 \cdot 3+(-2)(-2) \\ 0 \cdot 3+3(-2)\end{array}\right]=\left[\begin{array}{c}16 \\ -6\end{array}\right]$
17. $A+B=\left[\begin{array}{rr}4 & -2 \\ 0 & 3\end{array}\right]+\left[\begin{array}{ll}-1 & 5 \\ -4 & 6\end{array}\right]=\left[\begin{array}{ll}4+(-1) & (-2)+5 \\ 0+(-4) & 3+6\end{array}\right]=\left[\begin{array}{rr}3 & 3 \\ -4 & 9\end{array}\right]$
18. $C+D$ is not defined
(10-3)
19. $A+C$ is not defined
(10-3)
20. $2 A-5 B=2\left[\begin{array}{rr}4 & -2 \\ 0 & 3\end{array}\right]-5\left[\begin{array}{ll}-1 & 5 \\ -4 & 6\end{array}\right]=\left[\begin{array}{rr}8 & -4 \\ 0 & 6\end{array}\right]-\left[\begin{array}{rr}-5 & 25 \\ -20 & 30\end{array}\right]=\left[\begin{array}{ll}13 & -29 \\ 20 & -24\end{array}\right]$
21. $C A+C=\left[\begin{array}{ll}-1 & 4\end{array}\right]\left[\begin{array}{rr}4 & -2 \\ 0 & 3\end{array}\right]+\left[\begin{array}{ll}-1 & 4\end{array}\right]=\left[\begin{array}{ll}(-1) 4+4 \cdot 0 & (-1)(-2)+4 \cdot 3\end{array}\right]+\left[\begin{array}{ll}-1 & 4\end{array}\right]$

$$
=\left[\begin{array}{ll}
-4 & 14
\end{array}\right]+\left[\begin{array}{ll}
-1 & 4
\end{array}\right]=\left[\begin{array}{ll}
-5 & 18 \tag{10-3}
\end{array}\right]
$$

22. $\left[\begin{array}{rr|rr}4 & 7 & 1 & 0 \\ -1 & -2 & 0 & 1\end{array}\right] R_{1} \leftrightarrow R_{2} \sim\left[\begin{array}{rr|rr}-1 & -2 & 0 & 1 \\ 4 & 7 & 1 & 0\end{array}\right] 4 R_{1}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{rr|rr}-1 & -2 & 0 & 1 \\ 0 & -1 & 1 & 4\end{array}\right](-2) R_{2}+R_{1} \rightarrow R_{1}$
$\sim\left[\begin{array}{rr|rr}-1 & 0 & -2 & -7 \\ 0 & -1 & 1 & 4\end{array}\right] \begin{aligned} & (-1) R_{1} \rightarrow R_{1} \\ & (-1) R_{2} \rightarrow R_{2}\end{aligned} \sim\left[\begin{array}{rr|rr}1 & 0 & 2 & 7 \\ 0 & 1 & -1 & -4\end{array}\right]$
Hence, $A^{-1}=\left[\begin{array}{rr}2 & 7 \\ -1 & -4\end{array}\right]$

$$
A^{-1} A=\left[\begin{array}{rr}
2 & 7 \tag{10-4}\\
-1 & -4
\end{array}\right]\left[\begin{array}{rr}
4 & 7 \\
-1 & -2
\end{array}\right]=\left[\begin{array}{ll}
2 \cdot 4+7(-1) & 2 \cdot 7+7(-2) \\
(-1) 4+(-4)(-1) & (-1) 7+(-4)(-2)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

23. As a matrix equation the system becomes

$$
\begin{gathered}
A \\
{\left[\begin{array}{lr}
3 & 2 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=}
\end{gathered} \begin{gathered}
B \\
{\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]}
\end{gathered}
$$

The solution of $A X=B$ is $X=A^{-1} B$.
Applying matrix methods, we obtain $A^{-1}=\left[\begin{array}{rr}3 & -2 \\ -4 & 3\end{array}\right]$ (details omitted). Applying this inverse, we have

$$
X=\left[\begin{array}{rr}
3 & -2 \\
-4 & 3
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]
$$

(A) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{rr}3 & -2 \\ -4 & 3\end{array}\right]\left[\begin{array}{l}3 \\ 5\end{array}\right]=\left[\begin{array}{l}3 \cdot 3+(-2) 5 \\ (-4) 3+3 \cdot 5\end{array}\right]=\left[\begin{array}{r}-1 \\ 3\end{array}\right] \quad x_{1}=-1, x_{2}=3$
(B) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{rr}3 & -2 \\ -4 & 3\end{array}\right]\left[\begin{array}{r}7 \\ 10\end{array}\right]=\left[\begin{array}{l}3 \cdot 7+(-2) 10 \\ (-4) 7+3 \cdot 10\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right] \quad x_{1}=1, x_{2}=2$
(C) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{rr}3 & -2 \\ -4 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \cdot 4+(-2) 2 \\ (-4) 4+3 \cdot 2\end{array}\right]=\left[\begin{array}{r}8 \\ -10\end{array}\right] x_{1}=8, x_{2}=-10$
24. $\left|\begin{array}{rr}2 & -3 \\ -5 & -1\end{array}\right|=2(-1)-(-5)(-3)=-17$
25. $\left|\begin{array}{rrr}2 & 3 & -4 \\ 0 & 5 & 0 \\ 1 & -4 & -2\end{array}\right|=0+5(-1)^{2+2}\left|\begin{array}{cc}2 & -4 \\ 1 & -2\end{array}\right|+0=5(-1)^{4}[2(-2)-1(-4)]=0$
26. $D=\left|\begin{array}{rr}3 & -2 \\ 1 & 3\end{array}\right|=11 \quad x=\frac{\left|\begin{array}{rr}8 & -2 \\ -1 & 3\end{array}\right|}{D}=\frac{22}{11}=2 \quad y=\frac{\left|\begin{array}{rr}3 & 8 \\ 1 & -1\end{array}\right|}{D}=\frac{-11}{11}=-1$
27. We write the augmented matrix:
$\left[\begin{array}{rr|r}1 & -1 & 4 \\ 2 & 1 & 2\end{array}\right](-2) R_{1}+R_{2} \rightarrow R_{2}$
Need a 0 here
$\sim \sim\left[\begin{array}{rr|r}1 & -1 & 4 \\ 0 & 3 & -6\end{array}\right] \frac{1}{3} R_{2} \rightarrow R_{2}$ corresponds to the linear system $\left\{\begin{array}{r}x_{1}-x_{2}=4 \\ 3 x_{2}=-6\end{array}\right.$
Need a 1 here
Need a 0 here
\downarrow
$\sim\left[\begin{array}{rr|r}1 & -1 & 4 \\ 0 & 1 & -2\end{array}\right] R_{2}+R_{1} \rightarrow R_{1} \quad$ corresponds to the linear system $\left\{\begin{aligned} x_{1}-x_{2} & =4 \\ x_{2} & =-2\end{aligned}\right.$
$\sim\left[\begin{array}{rr|r}1 & 0 & 2 \\ 0 & 1 & -2\end{array}\right] \quad$ corresponds to the linear system $\left\{\begin{array}{l}x_{1}=2 \\ x_{2}=-2\end{array}\right.$
The solution is $x_{1}=2, x_{2}=-2$. Each pair of lines graphed has the same intersection point, $(2,-2)$.

$x_{1}-x_{2}=4$
$2 x_{1}+x_{2}=2$

$\begin{aligned} x_{1}-x_{2} & =4 \\ 3 x_{2} & =-6\end{aligned}$

$\begin{aligned} x_{1}-x_{2} & =4 \\ x_{2} & =-2\end{aligned}$

Entering these equations into a graphing calculator and applying an intersection routine yields the solution $(2.54,2.15)$ to two decimal places.
29. $\left.\begin{array}{ll|l}3 & 2 & 3 \\ 1 & 3 & 8\end{array}\right] R_{1} \leftrightarrow R_{2} \sim\left[\begin{array}{ll|l}1 & 3 & 8 \\ 3 & 2 & 3\end{array}\right] \underset{-3}{[-3)} R_{1}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{cc|c}1 & 3 & 8 \\ 0 & -7 & -21\end{array}\right]\left(-\frac{1}{7}\right) R_{2} \rightarrow R_{2} \sim\left[\begin{array}{cc|c}1 & 3 & 8 \\ 0 & 1 & 3\end{array}\right](-3) R_{2}+R_{1} \rightarrow R_{1}$
$\sim\left[\begin{array}{cc|c}1 & 0 & -1 \\ 0 & 1 & 3\end{array}\right]$ Solution: $x_{1}=-1, x_{2}=3$
(10-2)
30. $\left[\begin{array}{rrr|r}1 & 1 & 0 & 1 \\ 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 4\end{array}\right](-1) R_{1}+R_{2} \rightarrow R_{2}$
$\sim\left[\begin{array}{rrr|r}1 & 1 & 0 & 1 \\ 0 & -1 & -1 & -3 \\ 0 & 1 & 2 & 4\end{array}\right](-1) R_{2} \rightarrow R_{2}$
$\sim\left[\begin{array}{lll|l}1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 3 \\ 0 & 1 & 2 & 4\end{array}\right] \begin{aligned} & (-1) R_{2}+R_{1} \rightarrow R_{1} \\ & (-1) R_{2}+R_{3} \rightarrow R_{3}\end{aligned}$
$\sim\left[\begin{array}{rrr|r}1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 1\end{array}\right] \begin{aligned} & R_{3}+R_{1} \rightarrow R_{1} \\ & (-1) R_{3}+R_{2} \rightarrow R_{2}\end{aligned}$
$\sim\left[\begin{array}{rrr|r}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1\end{array}\right]$
Solution: $x_{1}=-1, x_{2}=2, x_{3}=1$
32. $\left[\begin{array}{rrr|r}1 & 2 & -1 & 2 \\ 2 & 3 & 1 & -3 \\ 3 & 5 & 0 & -1\end{array}\right] \begin{aligned} & (-2) R_{1}+R_{2} \rightarrow R_{2} \\ & (-3) R_{1}+R_{3} \rightarrow R_{3}\end{aligned}$
$\sim\left[\begin{array}{rrr|r}1 & 2 & -1 & 2 \\ 0 & -1 & 3 & -7 \\ 0 & -1 & 3 & -7\end{array}\right](-1) R_{2}+R_{3} \rightarrow R_{3}$
$\sim\left[\begin{array}{rrr|r}1 & 2 & -1 & 2 \\ 0 & -1 & 3 & -7 \\ 0 & 0 & 0 & 0\end{array}\right] 2 R_{2}+R_{1} \rightarrow R_{1}$
$\sim\left[\begin{array}{rrr|r}1 & 0 & 5 & -12 \\ 0 & -1 & 3 & -7 \\ 0 & 0 & 0 & 0\end{array}\right](-1) R_{2} \rightarrow R_{2}$
$\sim\left[\begin{array}{rrr|r}1 & 0 & 5 & -12 \\ 0 & 1 & -3 & 7 \\ 0 & 0 & 0 & 0\end{array}\right]$
31. $\left[\begin{array}{lll|l}1 & 2 & 3 & 1 \\ 2 & 3 & 4 & 3 \\ 1 & 2 & 1 & 3\end{array}\right] \begin{aligned} & (-2) R_{1}+R_{2} \rightarrow R_{2} \\ & (-1) R_{1}+R_{3} \rightarrow R_{3}\end{aligned}$
$\sim\left[\begin{array}{rrr|r}1 & 2 & 3 & 1 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & -2 & 2\end{array}\right] \begin{aligned} & (-1) R_{2} \rightarrow R_{2} \\ & -\frac{1}{2} R_{3} \rightarrow R_{3}\end{aligned}$
$\sim\left[\begin{array}{rrr|r}1 & 2 & 3 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 1 & -1\end{array}\right](-2) R_{2}+R_{1} \rightarrow R_{1}$
$\sim\left[\begin{array}{rrr|r}1 & 0 & -1 & 3 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 1 & -1\end{array}\right] \begin{aligned} & R_{3}+R_{1} \rightarrow R_{1} \\ & (-2) R_{3}+R_{2} \rightarrow R_{2}\end{aligned}$
$\sim\left[\begin{array}{rrr|r}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1\end{array}\right]$
Solution: $x_{1}=2, x_{2}=1, x_{3}=-1 \quad(10-2)$
This corresponds to the system

$$
\begin{aligned}
& x_{1}+\quad 5 x_{3}=-12 \\
& \quad \begin{array}{l}
x_{2}-3 x_{3}
\end{array}=7 \\
& \text { Let } \quad \begin{array}{l}
x_{3}
\end{array}=t \\
& \text { Then } \quad x_{2}=3 x_{3}+7=3 t+7 \\
& \\
& \\
& x_{1}=-5 x_{3}-12=-5 t-12
\end{aligned}
$$

Hence $x_{1}=-5 t-12, x_{2}=3 t+7, x_{3}=t$ is a solution for every real number t. There are infinitely many solutions.
(10-2)
33. $\left[\begin{array}{rr|r}1 & -2 & 1 \\ 2 & -1 & 0 \\ 1 & -3 & -2\end{array}\right] \begin{aligned} & (-2) R_{1}+R_{2} \rightarrow R_{2} \sim \\ & (-1) R_{1}+R_{3} \rightarrow R_{3}\end{aligned}\left[\begin{array}{rr|r}1 & -2 & 1 \\ 0 & 3 & -2 \\ 0 & -1 & -3\end{array}\right] 3 R_{3}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{rr|r}1 & -2 & 1 \\ 0 & 0 & -11 \\ 0 & -1 & -3\end{array}\right]$

The second row corresponds to the equation $0 x_{1}+0 x_{2}=-11$, hence there is no solution.
34. $\quad\left[\begin{array}{rrr|r}1 & 2 & -1 & 2 \\ 3 & -1 & 2 & -3\end{array}\right](-3) R_{1}+R_{2} \rightarrow R_{2}$
$\sim\left[\begin{array}{rrr|r}1 & 2 & -1 & 2 \\ 0 & -7 & 5 & -9\end{array}\right]-\frac{1}{7} R_{2} \rightarrow R_{2}$
$\sim\left[\begin{array}{ccc|c}1 & 2 & -1 & 2 \\ 0 & 1 & -\frac{5}{7} & \frac{9}{7}\end{array}\right](-2) R_{2}+R_{1} \rightarrow R_{1}$
$\sim\left[\begin{array}{rrr|r}1 & 0 & \frac{3}{7} & -\frac{4}{7} \\ 0 & 1 & -\frac{5}{7} & \frac{9}{7}\end{array}\right]$

This corresponds to the system

$$
\begin{array}{r}
x_{1}+\quad \frac{3}{7} x_{3}=-\frac{4}{7} \\
x_{2}-\frac{5}{7} x_{3}=\frac{9}{7}
\end{array}
$$

$$
\text { Let } \quad x_{3}=t
$$

$$
\text { Then } \quad x_{2}=\frac{5}{7} x_{3}+\frac{9}{7}=\frac{5}{7} t+\frac{9}{7}
$$

$$
x_{1}=-\frac{3}{7} x_{3}-\frac{4}{7}=-\frac{3}{7} t-\frac{4}{7}
$$

Hence $x_{1}=-\frac{3}{7} t-\frac{4}{7}, x_{2}=\frac{5}{7} t+\frac{9}{7}, x_{3}=t$ is a solution for every real number t. There are infinitely many solutions.
(10-2)
35. $A D=\left[\begin{array}{cc}1 & 2 \\ 4 & 5 \\ -3 & -1\end{array}\right]\left[\begin{array}{ccc}7 & 0 & -5 \\ 0 & 8 & -2\end{array}\right]=\left[\begin{array}{ccc}1 \cdot 7+2 \cdot 0 & 1 \cdot 0+2 \cdot 8 & 1(-5)+2(-2) \\ 4 \cdot 7+5 \cdot 0 & 4 \cdot 0+5 \cdot 8 & 4(-5)+5(-2) \\ (-3) 7+(-1) 0 & (-3) 0+(-1) 8 & (-3)(-5)+(-1)(-2)\end{array}\right]=\left[\begin{array}{ccc}7 & 16 & -9 \\ 28 & 40 & -30 \\ -21 & -8 & 17\end{array}\right]$
36. $\quad D A=\left[\begin{array}{lll}7 & 0 & -5 \\ 0 & 8 & -2\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 4 & 5 \\ -3 & -1\end{array}\right]=\left[\begin{array}{ll}7 \cdot 1+0 \cdot 4+(-5)(-3) & 7 \cdot 2+0 \cdot 5+(-5)(-1) \\ 0 \cdot 1+8 \cdot 4+(-2)(-3) & 0 \cdot 2+8 \cdot 5+(-2)(-1)\end{array}\right]=\left[\begin{array}{cc}22 & 19 \\ 38 & 42\end{array}\right]$
37. $B C=\left[\begin{array}{c}6 \\ 0 \\ -4\end{array}\right]\left[\begin{array}{lll}2 & 4 & -1\end{array}\right]=\left[\begin{array}{ccc}6 \cdot 2 & 6 \cdot 4 & 6(-1) \\ 0 \cdot 2 & 0 \cdot 4 & 0(-1) \\ (-4) 2 & (-4) 4 & (-4)(-1)\end{array}\right]=\left[\begin{array}{ccc}12 & 24 & -6 \\ 0 & 0 & 0 \\ -8 & -16 & 4\end{array}\right]$
38. $C B=\left[\begin{array}{lll}2 & 4 & -1\end{array}\right]\left[\begin{array}{c}6 \\ 0 \\ -4\end{array}\right]=[2 \cdot 6+4 \cdot 0+(-1)(-4)]=[16]$
39. Since D has 3 columns and E has 2 rows, $D E$ is not defined.
40. $E D=\left[\begin{array}{cc}9 & -3 \\ -6 & 2\end{array}\right]\left[\begin{array}{ccc}7 & 0 & -5 \\ 0 & 8 & -2\end{array}\right]=\left[\begin{array}{lll}9 \cdot 7+(-3) 0 & 9 \cdot 0+(-3) 8 & 9(-5)+(-3)(-2) \\ (-6) 7+2 \cdot 0 & (-6) 0+2 \cdot 8 & (-6)(-5)+2(-2)\end{array}\right]=\left[\begin{array}{ccc}63 & -24 & -39 \\ -42 & 16 & 26\end{array}\right]$
41. $\left[\begin{array}{rrr|rrr}1 & 0 & 4 & 1 & 0 & 0 \\ -2 & 1 & 0 & 0 & 1 & 0 \\ 4 & -1 & 4 & 0 & 0 & 1\end{array}\right] \begin{aligned} & 2 R_{1}+R_{2} \rightarrow R_{2} \\ & (-4) R_{1}+R_{3} \rightarrow R_{3}\end{aligned} \sim\left[\begin{array}{rrr|rrr}1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 8 & 2 & 1 & 0 \\ 0 & -1 & -12 & -4 & 0 & 1\end{array}\right] R_{2}+R_{3} \rightarrow R_{3}$

$\left[\begin{array}{rrr|rrr}1 & 0 & 0 & -1 & 1 & 1 \\ 0 & 1 & 0 & -2 & 3 & 2 \\ 0 & 0 & 1 & \frac{1}{2} & -\frac{1}{4} & -\frac{1}{4}\end{array}\right] \quad$ Hence $A^{-1}=\left[\begin{array}{rrr}-1 & 1 & 1 \\ -2 & 3 & 2 \\ \frac{1}{2} & -\frac{1}{4} & -\frac{1}{4}\end{array}\right]$

$$
\begin{aligned}
A^{-1} A=\left[\begin{array}{rrr}
-1 & 1 & 1 \\
-2 & 3 & 2 \\
\frac{1}{2} & -\frac{1}{4} & -\frac{1}{4}
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 4 \\
-2 & 1 & 0 \\
4 & -1 & 4
\end{array}\right] & =\left[\begin{array}{rrr}
(-1) 1+1(-2)+1 \cdot 4 & (-1) 0+1 \cdot 1+1(-1) & (-1) 4+1 \cdot 0+1 \cdot 4 \\
(-2) 1+3(-2)+2 \cdot 4 & (-2) 0+3 \cdot 1+2(-1) & (-2) 4+3 \cdot 0+2 \cdot 4 \\
\left(\frac{1}{2}\right) 1+\left(-\frac{1}{4}\right)(-2)+\left(-\frac{1}{4}\right) 4 & \left(\frac{1}{2}\right) 0+\left(-\frac{1}{4}\right) 1+\left(-\frac{1}{4}\right)(-1) & \left(\frac{1}{2}\right) 4+\left(-\frac{1}{4}\right) 0+\left(-\frac{1}{4}\right) 4
\end{array}\right] \\
& =\left[\begin{array}{lrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(10-4)
42. $\begin{array}{ccc}A & X & B \\ {\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 2 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}k_{1} \\ k_{2} \\ k_{3}\end{array}\right]}\end{array}$

The solution to $A X=B$ is $X=A^{-1} B$.
Applying matrix methods, we obtain $A^{-1}=\left[\begin{array}{rrr}-\frac{5}{2} & 2 & -\frac{1}{2} \\ 1 & -1 & 1 \\ \frac{1}{2} & 0 & -\frac{1}{2}\end{array}\right]$ (details omitted).
Applying the inverse, we have
(A) $B=\left[\begin{array}{l}1 \\ 3 \\ 3\end{array}\right] X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{rrr}-\frac{5}{2} & 2 & -\frac{1}{2} \\ 1 & -1 & 1 \\ \frac{1}{2} & 0 & -\frac{1}{2}\end{array}\right]\left[\begin{array}{l}1 \\ 3 \\ 3\end{array}\right]=\left[\begin{array}{r}2 \\ 1 \\ -1\end{array}\right] x_{1}=2, x_{2}=1, x_{3}=-1$
(B) $B=\left[\begin{array}{r}0 \\ 0 \\ -2\end{array}\right] X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{rrr}-\frac{5}{2} & 2 & -\frac{1}{2} \\ 1 & -1 & 1 \\ \frac{1}{2} & 0 & -\frac{1}{2}\end{array}\right]\left[\begin{array}{r}0 \\ 0 \\ -2\end{array}\right]=\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right] x_{1}=1, x_{2}=-2, x_{3}=1$
(C) $B=\left[\begin{array}{r}-3 \\ -4 \\ 1\end{array}\right] X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{rrr}-\frac{5}{2} & 2 & -\frac{1}{2} \\ 1 & -1 & 1 \\ \frac{1}{2} & 0 & -\frac{1}{2}\end{array}\right]\left[\begin{array}{r}-3 \\ -4 \\ 1\end{array}\right]=\left[\begin{array}{r}-1 \\ 2 \\ -2\end{array}\right] x_{1}=-1, x_{2}=2, x_{3}=-2$
(10-4)
43. $\left|\begin{array}{rr}-\frac{1}{4} & \frac{3}{2} \\ \frac{1}{2} & \frac{2}{3}\end{array}\right|=\left(-\frac{1}{4}\right)\left(\frac{2}{3}\right)-\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)=-\frac{1}{6}-\frac{3}{4}=-\frac{11}{12}$
(10-5)
44. $\left.\left|\begin{array}{rrr}2 & -1 & 1 \\ -3 & 5 & 2 \\ 1 & -2 & 4\end{array}\right|=\left|\begin{array}{rrr}0 & 0 & 1 \\ -7 & 7 & 2 \\ -7 & 2 & 4\end{array}\right| \begin{aligned} & (-2) C_{3}+C_{1} \rightarrow C_{1}=0+0+1(-1)^{1+3}\left|\begin{array}{ll}-7 & 7 \\ -7 & 2\end{array}\right|=(-1)^{4}[(-7) 2-(-7) 7]=35, C_{2} \rightarrow C_{2}\end{aligned} \right\rvert\,$
45. $y=\frac{\left|\begin{array}{rrr}1 & -6 & 1 \\ 0 & 4 & -1 \\ 2 & 2 & 1\end{array}\right|}{\left|\begin{array}{rrr}1 & -2 & 1 \\ 0 & 1 & -1 \\ 2 & 2 & 1\end{array}\right|}=\frac{\left|\begin{array}{rrr}1 & -6 & 1 \\ 0 & 4 & -1 \\ 0 & 14 & -1\end{array}\right|}{\left|\begin{array}{rrr}1 & -2 & -1 \\ 0 & 1 & 0 \\ 2 & 2 & 3\end{array}\right|}=\frac{1(-1)^{1+1}\left|\begin{array}{rr}4 & -1 \\ 14 & -1\end{array}\right|}{1(-1)^{2+2}\left|\begin{array}{rr}1 & -1 \\ 2 & 3\end{array}\right|}=\frac{(-1)^{2}[4(-1)-14(-1)]}{(-1)^{4}[1 \cdot 3-2(-1)]}=\frac{10}{5}=2$

$\sim\left[\begin{array}{clc|c}1 & 1 & 1 & 7000 \\ 0 & 1 & 2 & 8000 \\ 0 & 0.01 & -0.1 & -160\end{array}\right] \begin{gathered}(-1) R_{2}+R_{1} \rightarrow R_{1} \\ (-0.01) R_{2}+R_{3} \rightarrow R_{3}\end{gathered} \sim\left[\begin{array}{ccc|c}1 & 0 & -1 & -1000 \\ 0 & 1 & 2 & 8000 \\ 0 & 0 & -0.12 & -240\end{array}\right]-\frac{25}{3} R_{3} \rightarrow R_{3}$
$\sim\left[\begin{array}{rrr|r}1 & 0 & -1 & -1000 \\ 0 & 1 & 2 & 8000 \\ 0 & 0 & 1 & 2000\end{array}\right] \begin{gathered}R_{3}+R_{1} \rightarrow R_{1} \\ \left.(-2) R_{3}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{lll|l}1 & 0 & 0 & 1000 \\ 0 & 1 & 0 & 4000 \\ 0 & 0 & 1 & 2000\end{array}\right], ~\right]\end{gathered}$
Solution: $x_{1}=1000, x_{2}=4000, x_{3}=2000$
47. $\left|\begin{array}{ll}u+k v & v \\ w+k x & x\end{array}\right|=(u+k v) x-(w+k x) v=u x+k v x-w v-k v x=u x-w v=\left|\begin{array}{cc}u & v \\ w & x\end{array}\right|$
48.(A) The system is independent. There is one solution.
(B) The matrix is in fact

$$
\left[\begin{array}{ccc|c}
1 & 0 & -3 & 4 \\
0 & 1 & 2 & 5 \\
0 & 0 & 0 & n
\end{array}\right]
$$

The third row corresponds to the equation $0 x_{1}+0 x_{2}+0 x_{3}=n$. This is impossible. The system has no solution.
(C) The matrix is in fact
$\left[\begin{array}{ccc|c}1 & 0 & -3 & 4 \\ 0 & 1 & 2 & 5 \\ 0 & 0 & 0 & 0\end{array}\right]$
Thus, there are an infinite number of solutions $\left(x_{3}=t, x_{2}=5-2 t, x_{1}=4+3 t\right.$, for t any real number. $)$
49. (A) If the coefficient matrix has an inverse, then the system can be written as $A X=B$ and its solution can be written $X=A^{-1} B$. Thus the system has one solution.
(B) If the coefficient matrix does not have an inverse, then the system can be solved by Gauss-Jordan elimination, but it will not have exactly one solution. The other possibilities are that the system has no solution or an infinite number of solutions, and either possibility may occur.
50. If we assume that A is a non-zero matrix with an inverse A^{-1}, then if $A^{2}=0$ we can write $A^{-1} A^{2}=A^{-1} 0$ or $A^{-1} A A=0$ or $I A=0$ or $A=0$. But A was assumed non-zero, so there is a contradiction. Hence A^{-1} cannot exist for such a matrix.
(10-4)
51.

$$
\begin{array}{rlrl}
A X-B & =C X & & \\
A X-B+B-C X & =C X-C X+B & & \text { Addition property } \\
A X+0-C X & =0+B & & M+(-M)=0 \\
A X-C X & =B & & M+0=M \\
(A-C) X & =B & & \text { Right distributive property } \\
(A-C)^{-1}[(A-C) X] & =(A-C)^{-1} B & & \text { Left multiplication property } \\
{\left[(A-C)^{-1}(A-C)\right] X} & =(A-C)^{-1} B & & \text { Associative property } \\
I X & =(A-C)^{-1} B & & A^{-1} A=I \\
X & =(A-C)^{-1} B & & I X=X \\
& \text { Common Errors: }(A-C)^{-1} B \neq B(A-C)^{-1} & & \\
(A-C)^{-1} \neq A^{-1}-C C^{-1} & & \tag{10-4}
\end{array}
$$

52. $\left[\begin{array}{rrr|rrr}4 & 5 & 6 & 1 & 0 & 0 \\ 4 & 5 & -6 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1\end{array}\right](-1) R_{1}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{rrr|rrr}4 & 5 & 6 & 1 & 0 & 0 \\ 0 & 0 & -12 & -1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1\end{array}\right] R_{1} \leftrightarrow R_{3}$

$$
\begin{align*}
& \sim\left[\begin{array}{rrr|rrr}
1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & -12 & -1 & 1 & 0 \\
4 & 5 & 6 & 1 & 0 & 0
\end{array}\right] \underset{(-4) R_{1}+R_{3} \rightarrow R_{3}}{\sim} \sim\left[\begin{array}{rrr|rrr}
1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & -12 & -1 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & -4
\end{array}\right] R_{2} \leftrightarrow R_{3} \\
& \sim\left[\begin{array}{rrr|rrr}
1 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 2 & 1 & 0 & -4 \\
0 & 0 & -12 & -1 & 1 & 0
\end{array}\right] \stackrel{(-1) R_{2}+R_{1} \rightarrow R_{1}}{\sim} \sim\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & -1 & 0 & 5 \\
0 & 1 & 2 & 1 & 0 & -4 \\
0 & 0 & -12 & -1 & 1 & 0
\end{array}\right]-\frac{1}{12} R_{3} \rightarrow R_{3} \\
& \sim\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & -1 & 0 & 5 \\
0 & 1 & 2 & 1 & 0 & -4 \\
0 & 0 & 1 & \frac{1}{12} & -\frac{1}{12} & 0
\end{array}\right] \begin{array}{c}
R_{3}+R_{1} \rightarrow R_{1} \\
(-2) R_{3}+R_{2} \rightarrow R_{2} \sim
\end{array}\left[\begin{array}{lll|rrr}
1 & 0 & 0 & -\frac{11}{12} & -\frac{1}{12} & 5 \\
0 & 1 & 0 & \frac{10}{12} & \frac{2}{12} & -4 \\
0 & 0 & 1 & \frac{1}{12} & -\frac{1}{12} & 0
\end{array}\right] \\
& \text { Hence } A^{-1}=\left[\begin{array}{rrr}
-\frac{11}{12} & -\frac{1}{12} & 5 \\
\frac{10}{12} & \frac{2}{12} & -4 \\
\frac{1}{12} & -\frac{1}{12} & 0
\end{array}\right] \text { or } \frac{1}{12}\left[\begin{array}{rrr}
-11 & -1 & 60 \\
10 & 2 & -48 \\
1 & -1 & 0
\end{array}\right] \\
& A^{-1} A=\frac{1}{12}\left[\begin{array}{rrr}
-11 & -1 & 60 \\
10 & 2 & -48 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{rrr}
4 & 5 & 6 \\
4 & 5 & -6 \\
1 & 1 & 1
\end{array}\right] \\
& =\frac{1}{12}\left[\begin{array}{rrr}
(-11) 4+(-1) 4+60 \cdot 1 & (-11) 5+(-1) 5+60 \cdot 1 & (-11) 6+(-1)(-6)+60 \cdot 1 \\
10 \cdot 4+2 \cdot 4+(-48) 1 & 10 \cdot 5+2 \cdot 5+(-48) 1 & 10 \cdot 6+2(-6)+(-48) 1 \\
1 \cdot 4+(-1) 4+0 \cdot 1 & 1 \cdot 5+(-1) 5+0 \cdot 1 & 1 \cdot 6+(-1)(-6)+0 \cdot 1
\end{array}\right] \\
& =\frac{1}{12}\left[\begin{array}{rrr}
12 & 0 & 0 \\
0 & 12 & 0 \\
0 & 0 & 12
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I \tag{10-4}
\end{align*}
$$

53. Multiplying the first two equations by 100 , the system becomes

$$
\begin{aligned}
4 x_{1}+5 x_{2}+6 x_{3} & =36,000 \\
4 x_{1}+5 x_{2}-6 x_{3} & =12,000 \\
x_{1}+x_{2}+x_{3} & =7,000
\end{aligned}
$$

As a matrix equation, we have

$$
\begin{gathered}
A \\
{\left[\begin{array}{rrr}
4 & 5 & 6 \\
4 & 5 & -6 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}
\end{gathered}=\begin{gathered}
B \\
{\left[\begin{array}{r}
36,000 \\
12,000 \\
7,000
\end{array}\right]}
\end{gathered}
$$

The solution to $A X=B$ is $X=A^{-1} B$. Using A^{-1} from problem 52, we have

$$
\begin{align*}
X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] & =\frac{1}{12}\left[\begin{array}{rrr}
-11 & -1 & 60 \\
10 & 2 & -48 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{r}
36,000 \\
12,000 \\
7,000
\end{array}\right]=\frac{1}{12}\left[\begin{array}{c}
(-11)(36,000)+(-1)(12,000)+(60)(7,000) \\
(10)(36,000)+(2)(12,000)+(-48)(7,000) \\
1(36,000)+(-1)(12,000)+(0)(7,000)
\end{array}\right] \\
& =\frac{1}{12}\left[\begin{array}{l}
12,000 \\
48,000 \\
24,000
\end{array}\right]=\left[\begin{array}{c}
1,000 \\
4,000 \\
2,000
\end{array}\right] \quad \text { Hence, } x_{1}=1,000, x_{2}=4,000, x_{3}=2,000 \tag{10-4}
\end{align*}
$$

54. Let $x=$ number of $\frac{1}{2}-$ pound packages

$$
y=\text { number of } \frac{1}{3}-\text { pound packages }
$$

There are 120 packages. Hence
$x+y=120$
Since $x \frac{1}{2}$ - pound packages weigh $\frac{1}{2} x$ pounds and $y \frac{1}{3}$ - pound packages weigh $\frac{1}{3} y$ pounds, we have
$\frac{1}{2} x+\frac{1}{3} y=48$
We solve the system (1), (2) using elimination by addition. We multiply the second equation by -3 and add.

$$
\begin{aligned}
x+y & =120 \\
-\frac{3}{2} x-y & =-144 \\
-\frac{1}{2} x & =-24 \\
x & =48
\end{aligned}
$$

Substituting into equation (1), we have
$48+y=120$

$$
y=72
$$

$48 \frac{1}{2}$-pound packages and $72 \frac{1}{3}$-pound packages.
(10-1, 10-2)
55.Let $x_{1}=$ number of grams of $\operatorname{mix} A$
$x_{2}=$ number of grams of mix B
$x_{3}=$ number of grams of mix C
We have
$0.30 x_{1}+0.20 x_{2}+0.10 x_{3}=27$ (protein)
$0.03 x_{1}+0.05 x_{2}+0.04 x_{3}=5.4$ (fat)
$0.10 x_{1}+0.20 x_{2}+0.10 x_{3}=19$ (moisture)
Clearing of decimals for convenience, we have

$$
\begin{aligned}
3 x_{1}+2 x_{2}+x_{3} & =270 \\
3 x_{1}+5 x_{2}+4 x_{3} & =540 \\
x_{1}+2 x_{2}+x_{3} & =190
\end{aligned}
$$

Form the augmented matrix and solve by Gauss-Jordan elimination.

$$
\begin{align*}
& \left.\left[\begin{array}{lll|r}
3 & 2 & 1 & 270 \\
3 & 5 & 4 & 540 \\
1 & 2 & 1 & 190
\end{array}\right] R_{3} \leftrightarrow R_{1} \sim\left[\begin{array}{rrr|r}
1 & 2 & 1 & 190 \\
3 & 5 & 4 & 540 \\
3 & 2 & 1 & 270
\end{array}\right] \begin{array}{|rrrr}
(-3) R_{1}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & -1 & 1
\end{array}\right. & -30 \\
(-3) R_{1}+R_{3} \rightarrow R_{3}
\end{array}\right](-1) R_{2} \rightarrow R_{2} \\
& \sim\left[\begin{array}{rrr|r}
1 & 2 & 1 & 190 \\
0 & 1 & -1 & 30 \\
0 & -4 & -2 & -300
\end{array}\right] \underset{(-2) R_{2}+R_{1} \rightarrow R_{1}}{\sim} \sim\left[\begin{array}{rrr|r}
1 & 0 & 3 & 130 \\
0 & 1 & -1 & 30 \\
0 & 0 & -6 & -180
\end{array}\right] \underset{-\frac{1}{6} R_{3} \rightarrow R_{3} \rightarrow R_{3}}{\sim} \sim\left[\begin{array}{rrr|r}
1 & 0 & 3 & 130 \\
0 & 1 & -1 & 30 \\
0 & 0 & 1 & 30
\end{array}\right] \begin{array}{c}
(-3) R_{3}+R_{1} \rightarrow R_{1} \\
R_{3}+R_{2} \rightarrow R_{2}
\end{array} \\
& \sim\left[\begin{array}{ccc|c}
1 & 0 & 0 & 40 \\
0 & 1 & 0 & 60 \\
0 & 0 & 1 & 30
\end{array}\right] \quad \begin{array}{l}
\text { Therefore } \\
x_{1}=40 \text { grams } \operatorname{Mix} A \\
x_{2}=60 \text { grams } \operatorname{Mix} B \\
x_{3}=30 \text { grams Mix } C
\end{array} \tag{10-4}
\end{align*}
$$

56. Let $x_{1}=$ number of tons at Big Bend $x_{2}=$ number of tons at Saw Pit
Then
$0.05 x_{1}+0.03 x_{2}=$ number of tons of nickel at both mines $=k_{1}$
$0.07 x_{1}+0.04 x_{2}=$ number of tons of copper at both mines $=k_{2}$
We solve
$0.05 x_{1}+0.03 x_{2}=k_{1}$
$0.07 x_{1}+0.04 x_{4}=k_{2}$,
for arbitrary k_{1} and k_{2}, by writing the system as a matrix equation.
$A \quad X \quad B$
$\left[\begin{array}{ll}0.05 & 0.03 \\ 0.07 & 0.04\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}k_{1} \\ k_{2}\end{array}\right]$
If A^{-1} exists, then $X=A^{-1} B$. To find A^{-1}, we perform row operations on
$\left[\begin{array}{ll|ll}0.05 & 0.03 & 1 & 0 \\ 0.07 & 0.04 & 0 & 1\end{array}\right] 20 R_{1} \rightarrow R_{1} \sim\left[\begin{array}{ll|rr}1 & 0.6 & 20 & 0 \\ 0.07 & 0.04 & 0 & 1\end{array}\right](-0.07) R_{1}+R_{2} \rightarrow R_{2}$
$\sim\left[\begin{array}{cc|ll}1 & 0.6 & 20 & 0 \\ 0 & -0.002 & -1.4 & 1\end{array}\right]-500 R_{2} \rightarrow R_{2} \sim\left[\begin{array}{ll|rr}1 & 0.6 & 20 & 0 \\ 0 & 1 & 700 & -500\end{array}\right](-0.6) R_{2}+R_{1} \rightarrow R_{1}$
$\sim\left[\begin{array}{ll|rr}1 & 0 & -400 & 300 \\ 0 & 1 & 700 & -500\end{array}\right] \quad$ Hence $A^{-1}=\left[\begin{array}{rr}-400 & 300 \\ 700 & -500\end{array}\right]$
Check: $A^{-1} A=\left[\begin{array}{rr}-400 & 300 \\ 700 & -500\end{array}\right]\left[\begin{array}{ll}0.05 & 0.03 \\ 0.07 & 0.04\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
We can now solve the system as:
X
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=$ $\begin{gathered}B \\ {\left[\begin{array}{rr}-400 & 300 \\ 700 & -500\end{array}\right]\left[\begin{array}{l}k_{1} \\ k_{2}\end{array}\right]}\end{gathered}$
(A) If $k_{1}=3.6, k_{2}=5$,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{rr}
-400 & 300 \\
700 & -500
\end{array}\right]\left[\begin{array}{l}
3.6 \\
5
\end{array}\right]=\left[\begin{array}{l}
60 \\
20
\end{array}\right]
$$

60 tons of ore must be produced at Big Bend, 20 tons of ore at Saw Pit.
(B) If $k_{1}=3, k_{2}=4.1$,
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{rr}-400 & 300 \\ 700 & -500\end{array}\right]\left[\begin{array}{l}3 \\ 4.1\end{array}\right]=\left[\begin{array}{l}30 \\ 50\end{array}\right]$
30 tons of ore must be produced at Big Bend, 50 tons of ore at Saw Pit.
(C) If $k_{1}=3.2, k_{2}=4.4$,
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{rr}-400 & 300 \\ 700 & -500\end{array}\right]\left[\begin{array}{l}3.2 \\ 4.4\end{array}\right]=\left[\begin{array}{l}40 \\ 40\end{array}\right]$
40 tons of ore must be produced at Big Bend, 40 tons of ore at Saw Pit.
(10-4)
57. (A) The labor cost of producing one printer stand at the South Carolina plant is the product of the stand row of L with the South Carolina column of H.
$\left[\begin{array}{lll}0.9 & 1.8 & 0.6\end{array}\right]\left[\begin{array}{r}10.00 \\ 8.50 \\ 4.50\end{array}\right]=27$ dollars
(B) The matrix $H L$ has no obvious meaning, but the matrix $L H$ represents the total labor costs for each item at each plant.
(C) $\quad L H=\left[\begin{array}{lll}1.7 & 2.4 & 0.8 \\ 0.9 & 1.8 & 0.6\end{array}\right]\left[\begin{array}{cl}11.50 & 10.00 \\ 9.50 & 8.50 \\ 5.00 & 4.50\end{array}\right]$

$$
=\left[\begin{array}{ll}
(1.7)(11.50)+(2.4)(9.50)+(0.8)(5.00) & (1.7)(10.00)+(2.4)(8.50)+(0.8)(4.50) \\
(0.9)(11.50)+(1.8)(9.50)+(0.6)(5.00) & (0.9)(10.00)+(1.8)(8.50)+(0.6)(4.50)
\end{array}\right]
$$

N.C. S.C.
$=\left[\begin{array}{ll}\$ 46.35 & \$ 41.00 \\ \$ 30.45 & \$ 27.00\end{array}\right] \begin{aligned} & \text { Desk } \\ & \text { Stands }\end{aligned}$
58. (A) The average monthly production for the months of January and February is represented by the matrix

$$
\begin{gathered}
\frac{1}{2}(J+F) \\
\frac{1}{2}(J+F)=\frac{1}{2}\left(\left[\begin{array}{rr}
1,500 & 1,650 \\
850 & 700
\end{array}\right]+\left[\begin{array}{rr}
1,700 & 1,810 \\
930 & 740
\end{array}\right]\right)=\frac{1}{2}\left[\begin{array}{rr}
3,200 & 3,460 \\
1,780 & 1,440
\end{array}\right]=\left[\begin{array}{rr}
1,600 & 1,730 \\
890 & 720
\end{array}\right] \text { Desks }
\end{gathered}
$$

(B) The increase in production from January to February is represented by the matrix $F-J$.
N.C. S.C.

$$
F-J=\left[\begin{array}{rr}
1,700 & 1,810 \\
930 & 740
\end{array}\right]-\left[\begin{array}{rr}
1,500 & 1,650 \\
850 & 700
\end{array}\right]=\left[\begin{array}{rr}
200 & 160 \\
80 & 40
\end{array}\right] \text { Desks } \text { Stands }
$$

(C) $J\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{rr}1,500 & 1,650 \\ 850 & 700\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}3,150 \\ 1,550\end{array}\right] \begin{aligned} & \text { Desks } \\ & \text { Stands }\end{aligned}$

This matrix represents the total production of each item in January.
(10-3)
59. The inverse of matrix B is calculated to be

$$
B^{-1}=\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 1 \\
-1 & 0 & 1
\end{array}\right]
$$

Putting the coded message into matrix form and multiplying by B^{-1} yields

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 1 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{llllll}
21 & 30 & 29 & 46 & 19 & 52 \\
21 & 28 & 34 & 35 & 21 & 52 \\
27 & 31 & 50 & 62 & 39 & 79
\end{array}\right]=\left[\begin{array}{cccccc}
15 & 27 & 13 & 19 & 1 & 25 \\
6 & 3 & 16 & 27 & 18 & 27 \\
6 & 1 & 21 & 16 & 20 & 27
\end{array}\right]
$$

This decodes to

$$
\begin{array}{rccccccccccccccccc}
15 & 6 & 6 & 27 & 3 & 1 & 13 & 16 & 21 & 19 & 27 & 16 & 1 & 18 & 20 & 25 & 27 & 27 \\
\mathrm{O} & \mathrm{~F} & \mathrm{~F} & & \mathrm{C} & \mathrm{~A} & \mathrm{M} & \mathrm{P} & \mathrm{U} & \mathrm{~S} & & \mathrm{P} & \mathrm{~A} & \mathrm{R} & \mathrm{~T} & \mathrm{Y} & & \tag{10-4}
\end{array}
$$

60. (A) Let $x_{1}=$ number of nickels, $x_{2}=$ number of dimes

$$
\text { Then } x_{1}+x_{2}=30 \text { (total number of coins) }
$$

$$
5 x_{1}+10 x_{2}=190 \text { (total value of coins) }
$$

We form the augmented matrix and solve by Gauss-Jordan elimination.
$\left[\begin{array}{rr|r}1 & 1 & 30 \\ 5 & 10 & 190\end{array}\right](-5) R_{1}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{ll|l}1 & 1 & 30 \\ 0 & 5 & 40\end{array}\right] \frac{1}{5} R_{2} \rightarrow R_{2} \sim\left[\begin{array}{rr|r}1 & 1 & 30 \\ 0 & 1 & 8\end{array}\right](-1) R_{2}+R_{1} \rightarrow R_{1}$
$\sim\left[\begin{array}{rr|r}1 & 0 & 22 \\ 0 & 1 & 8\end{array}\right]$
The augmented matrix is in reduced form. It corresponds to the system

$$
\begin{aligned}
& x_{1}=22 \text { nickels } \\
& x_{2}=8 \text { dimes }
\end{aligned}
$$

(B) Let $x_{1}=$ number of nickels, $x_{2}=$ number of dimes, $x_{3}=$ number of quarters

Then $x_{1}+x_{2}+x_{3}=30$ (total number of coins)
$5 x_{1}+10 x_{2}+25 x_{3}=190$ (total value of coins)
We form the augmented matrix and solve by Gauss-Jordan elimination

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
1 & 1 & 1 & 30 \\
5 & 10 & 25 & 190
\end{array}\right](-5) R_{1}+R_{2} \rightarrow R_{2} \sim\left[\begin{array}{rrr|r}
1 & 1 & 1 & 30 \\
0 & 5 & 20 & 40
\end{array}\right] \frac{1}{5} R_{2} \rightarrow R_{2} \sim\left[\begin{array}{rrr|r}
1 & 1 & 1 & 30 \\
0 & 1 & 4 & 8
\end{array}\right](-1) R_{2}+R_{1} \rightarrow R_{1} } \\
\sim & {\left[\begin{array}{rrr|r}
1 & 0 & -3 & 22 \\
0 & 1 & 4 & 8
\end{array}\right] }
\end{aligned}
$$

The augmented matrix is in reduced form. It corresponds to the system:

$$
\begin{aligned}
& x_{1}-3 x_{3}=22 \\
& x_{2}+4 x_{3}=8
\end{aligned}
$$

Let $x_{3}=t$. Then $\quad x_{2}=-4 x_{3}+8=-4 t+8$

$$
x_{1}=3 x_{3}+22=3 t+22
$$

A solution is achieved, not for every real value of t, but for integer values of t that give rise to non-negative x_{1}, x_{2}, x_{3}.
$x_{1} \geq 0$ means $3 t+22 \geq 0$ or $t \geq-7 \frac{1}{3}$
$x_{2} \geq 0$ means $-4 t+8 \geq 0$ or $t \leq 2$
$x_{3} \geq 0$ means $\quad t \geq 0$
The only integer values of t that satisfy these conditions are $0,1,2$. Thus we have the solutions
$x_{1}=3 t+22$ nickels
$x_{2}=8-4 t$ dimes
$x_{3}=t$ quarters \quad where $t=0,1$, or 2

