CHAPTER 5

Section 5-1

1. An exponential function is a function where the variable appears in an exponent.
2. If $b>1$, the function is an increasing function. If $0<b<1$, the function is a decreasing function.
3. A positive number raised to any real power will give a positive result.
4. (A) The graph of $y=(0.2)^{x}$ is decreasing and passes through the point $\left(-1,0.2^{-1}\right)=(-1,5)$.

This corresponds to graph g .
(B) The graph of $y=2^{x}$ is increasing and passes through the point (1,2). This corresponds to graph n.
(C) The graph of $y=\left(\frac{1}{3}\right)^{x}$ is decreasing and passes through the point $(-1,3)$. This corresponds to graph f .
(D) The graph of $y=4^{x}$ is increasing and passes through the point $(1,4)$. This corresponds to graph m .
9. 16.24
11. 7.524
13. 1.649
15. 4.469
17. $10^{3 x-1} 10^{4-x}=10^{3 x-1+4-x}=10^{2 x+3}$
19. $\frac{3 x}{3^{1-x}}=3^{x-(1-x)}=3^{x-1+x}=3^{2 x-1}$
21. $\left(\frac{4^{x}}{5^{y}}\right)^{3 z}=\frac{4^{3 x z}}{5^{3 y z}}$
23. $\frac{e^{5 x}}{e^{2 x+1}}=e^{5 x-(2 x+1)}=e^{5 x-2 x-1}=e^{3 x-1}$
25. The graph of g is the same as the graph of f stretched vertically by a factor of 3 . Therefore g is increasing and the graph has horizontal asymptote $y=0$.

27. The graph of g is the same as the graph of f reflected through the y axis and shrunk vertically by a factor of $\frac{1}{3}$. Therefore g is decreasing and the graph has horizontal asymptote $y=0$.

29. The graph of g is the same as the graph of f shifted upward 2 units. Therefore g is increasing and the graph has horizontal asymptote $y=2$.

31. The graph of g is the same as the graph of f shifted 2 units to the left. Therefore g is increasing and the graph has horizontal asymptote $y=0$.

33. $5^{3 x}=5^{4 x-2}$ if and only if
$3 x=4 x-2$
$-x=-2$
$x=2$
35. $\begin{aligned} 7^{x^{2}} & =7^{2 x+3} \text { if and only if } \\ x^{2} & =2 x+3 \\ x^{2}-2 x-3 & =0 \\ (x-3)(x+1) & =0 \\ x & =-1,3\end{aligned}$

$$
x=-1,3
$$

41. $2 x e^{-x}=0$ if $2 x=0$ or $e^{-x}=0$. Since e^{-x} is never 0 , the only solution is $x=0$.
42. $\begin{aligned} &\left(\frac{4}{5}\right)^{6 x+1}=\frac{5}{4} \\ &\left(\frac{4}{5}\right)^{6 x+1}=\left(\frac{4}{5}\right)^{-1} \text { if and only } \\ & \text { if } \\ & 6 x+1=-1 \\ & 6 x=-2 \\ & x=-\frac{1}{3}\end{aligned}$
43. $x^{2} e^{x}-5 x e^{x}=0$ $x e^{x}(x-5)=0$

$$
x=0 \text { or } e^{x}=0 \text { or } x-5=0
$$

$$
\text { never } \quad x=5
$$

$$
x=0,5
$$

$$
\begin{aligned}
& \text { 45. } \begin{aligned}
& 9^{x^{2}}=3^{3 x-1} \\
&\left(3^{2}\right)^{x^{2}}=3^{3 x-1} \\
& 3^{2 x^{2}}=3^{3 x-1} \text { if and only if } \\
& 2 x^{2}=3 x-1 \\
& 2 x^{2}-3 x+1=0 \\
&(2 x-1)(x-1)=0 \\
& x=\frac{1}{2}, 1
\end{aligned}
\end{aligned}
$$

51.
52. $25^{x+3}=125^{x}$
$\left(5^{2}\right)^{x+3}=\left(5^{3}\right)^{x}$
$5^{2 x+6}=5^{3 x}$ if and only if

$$
2 x+6=3 x
$$

$x=6$
49. $\quad 4^{2 x+7}=8^{x+2}$
$\left(2^{2}\right)^{2 x+7}=\left(2^{3}\right)^{x+2}$
$2^{4 x+14}=2^{3 x+6}$ if and only if

$$
4 x+14=3 x+6
$$

$$
x=-8
$$

53. $1^{-3}=\frac{1}{1^{3}}=1,1^{-2}=\frac{1}{1^{2}}=1,1^{-1}=\frac{1}{1^{1}}=1$,
$1^{0}=1,1^{2}=1,1^{3}=1$.
$1^{x}=1$ for all real x; the function $f(x)=1^{x}$ is neither increasing nor decreasing and is equal to $f(x)=1$, thus the variable is effectively not in the exponent at all.
This does not violate the exponential property mentioned because $a=1$ and a negative are excluded from consideration in the statement of the property.
54. The graph of g is the same as the graph of f reflected through the x axis; g is increasing; horizontal asymptote: $y=0$.

55. The graph of g is the same as the graph of f stretched horizontally by a factor of 2 and shifted upward 3 units; g is decreasing; horizontal asymptote: $y=3$.

56. The graph of g is the same as the graph of f stretched vertically by a factor of $500 ; g$ is increasing; horizontal asymptote: $y=0$.

57. The graph of g is the same as the graph of f shifted 3 units to the right, stretched vertically by a factor of 2 , and shifted upward 1 unit; g is increasing; horizontal asymptote: $y=1$.

58. The graph of g is the same as the graph of f shifted 2 units to the right, reflected in the origin, stretched vertically by a factor of 4 , and shifted upward 3 units; g is increasing; horizontal asymptote: $y=3$.

59. $\frac{-2 x^{3} e^{-2 x}-3 x^{2} e^{-2 x}}{x^{6}}=\frac{x^{2} e^{-2 x}(-2 x-3)}{x^{6}}=\frac{e^{-2 x}(-2 x-3)}{x^{4}}$
60. $\left(e^{x}+e^{-x}\right)^{2}+\left(e^{x}-e^{-x}\right)^{2}=\left(e^{x}\right)^{2}+2\left(e^{x}\right)\left(e^{-x}\right)+\left(e^{-x}\right)^{2}+\left(e^{x}\right)^{2}-2\left(e^{x}\right)\left(e^{-x}\right)+\left(e^{-x}\right)^{2}$

$$
\begin{array}{|l|l}
\hline \text { Common Errors: } & =e^{2 x}+2+e^{-2 x}+e^{2 x}-2+e^{-2 x} \\
\left(e^{x}\right)^{2} \neq e^{x^{2}} & =2 e^{2 x}+2 e^{-2 x} \\
e^{2 x}+e^{2 x} \neq e^{4 x} &
\end{array}
$$

69. Examining the graph of $y=f(x)$, we obtain

70. Examining the graph of $y=\mathrm{s}(x)$, we obtain

There are no local extrema and no x intercepts. The y intercept is 2.14. As $x \rightarrow-\infty, y \rightarrow 2$, so the line $y=2$ is a horizontal asymptote.

There is a local maximum at $\mathrm{s}(0)=1$, and 1 is the y intercept. There is no x intercept. As $x \rightarrow \infty$ or $x \rightarrow-\infty, y \rightarrow 0$, so the line $y=0$ (the x axis) is a horizontal asymptote
73. Examining the graph of $y=F(x)$, we obtain

There are no local extrema and no x intercepts.
When $x=0, F(0)=\frac{200}{1+3 e^{-0}}=50$ is the y intercept.
As $x \rightarrow-\infty, y \rightarrow 0$, so the line $y=0$ (the x axis) is a horizontal asymptote. As $x \rightarrow \infty, y \rightarrow 200$, so the line $y=200$ is also a horizontal asymptote.
75.

The local minimum is $f(0)=1$, so zero is the y intercept. There are no x intercepts or horizontal asymptotes; $f(x) \rightarrow \infty$ as $x \rightarrow \infty$ and $x \rightarrow-\infty$.
77. Examining the graph of $y=f(x)$, we obtain

As $x \rightarrow 0, f(x)=(1+x)^{1 / x}$ seems to approach a value near 3. A table of values near $x=0$ yields

Although $f(0)$ is not defined, as $x \rightarrow 0, f(x)$ seems to approach a number near 2.718. In fact, it approaches e, since as $x \rightarrow 0, u=\frac{1}{x} \rightarrow \infty$, and $f(x)=\left(1+\frac{1}{u}\right)^{u}$ must approach e as $u \rightarrow \infty$.
79. Make a table of values, substituting in each requested x value:

x	1.4	1.41	1.414	1.4142	1.41421	1.414214
2^{x}	2.639016	2.657372	2.664750	2.665119	2.665138	2.665145

The approximate value of $2^{\sqrt{2}}$ is 2.665145 to six decimal places. Using a calculator to compute directly, we get 2.665144 .
81.

83.

85. Here are graphs of $f_{1}(x)=\frac{x}{e^{x}}, f_{2}(x)=\frac{x^{2}}{e^{x}}$, and $f_{3}(x)=\frac{x^{3}}{e^{x}}$. In each case as $x \rightarrow \infty, f_{n}(x) \rightarrow 0$. The line $y=0$ is a horizontal asymptote. As $x \rightarrow-\infty, f_{1}(x) \rightarrow-\infty$ and $f_{3}(x) \rightarrow-\infty$, while $f_{2}(x) \rightarrow \infty$. It appears that as $x \rightarrow-\infty, f_{n}(x) \rightarrow \infty$ if n is even and $f_{n}(x) \rightarrow-\infty$ if n is odd.
f_{1} :

$f_{3}:$

As confirmation of these observations, we show the graph of $f_{4}=\frac{x^{4}}{e^{x}}$ (not required).

87. We use the compound interest formula
$A=P\left(1+\frac{r}{m}\right)^{n}$ to find $P: P=\frac{A}{\left(1+\frac{r}{m}\right)^{n}}$
$m=365 \quad r=0.0625 \quad A=100,000 \quad n=365 \cdot 17$
$P=\frac{100,000}{\left(1+\frac{0.0625}{365}\right)^{365 \cdot 17}}=\$ 34,562.00$ to the nearest dollar
91. We use the compound interest formula $A=P\left(1+\frac{r}{m}\right)^{n}$

For the first account, $P=3000, r=0.08, m=365$. Let $y_{1}=A$, then $y_{1}=3000(1+0.08 / 365)^{x}$ where x is the number of compounding periods (days). For the second account, $P=5000, r=0.05, m=365$. Let $y_{2}=A$, then $y_{2}=5000(1+0.05 / 365)^{x}$
Examining the graphs of y_{1} and y_{2}, we obtain the graphs at the right. The graphs intersect at x $=6216.15$ days. Comparing the amounts in the accounts, we see that the first account is worth more than the second for $x \geq 6217$ days.

0
93. We use the compound interest formula $A=P\left(1+\frac{r}{m}\right)^{n}$

For the first account, $P=10,000, r=0.049, m=365$. Let $y_{1}=A$, then $y_{1}=10000(1+0.049 / 365)^{x}$ where x is the number of compounding periods (days). For the second account, $P=10,000, r=0.05, m=4$. Let $y_{2}=A$, then $y_{2}=10000(1+0.05 / 4)^{4 \times 365}$ where x is the number of days. Examining the graphs of y_{1} and y_{2}, we obtain the graph at the right.
 The two graphs are just about indistinguishable from one another. Examining a table of values, we obtain:

X	Y1	Y_{2}	X	Y1	Y 2
W	10000	10000	$6{ }^{636} 75$	10995	10909
${ }^{91} 18.5$	10248	1085	811.25	${ }^{11165}$	11118
365	10504 10502	10509	- 1003.8	11442	11434
456.25 547.5	10763	${ }^{10647}$		${ }_{1}^{11785}$	${ }_{1}^{11753}$
X=0			X=1186.25		

The two accounts are extremely close in value, but the second account is always larger than the first. The first will never be larger than the second.
95. We use the Continuous Compound Interest Formula
$A=P e^{r t}$
$P=\frac{A}{e^{r t}}$ or $P=A e^{-r t}$
$A=30,000 \quad r=0.06 t=10$
$P=30,000 e^{(-0.06)(10)}$
$P=\$ 16,464.35$
97. We use the compound interest formula $A=P\left(1+\frac{r}{m}\right)^{n}$

Flagstar Bank: $P=5,000 \quad r=0.0312 \quad m=4 \quad n=(4)(3)$

$$
A=5,000\left(1+\frac{0.0312}{4}\right)^{(4)(3)}=\$ 5,488.61
$$

UmbrellaBank.com: $P=5,000 \quad r=0.03 \quad m=365 \quad n=(365)(3)$

$$
A=5,000\left(1+\frac{0.03}{365}\right)^{(365)(3)}=\$ 5,470.85
$$

Allied First Bank: $P=5,000 \quad r=0.0296 \quad m=12 \quad n=(12)(3)$

$$
A=5,000\left(1+\frac{0.0296}{12}\right)^{(12)(3)}=\$ 5,463.71
$$

99. We use the compound interest formula
$A=P\left(1+\frac{r}{m}\right)^{n} m=52 \quad$ [Note: If $m=365 / 7$ is used the answers will differ very slightly.]
$P=4,000 \quad r=0.06$
$A=4,000\left(1+\frac{0.06}{52}\right)^{n}$
(A) $n=(52)(0.5)$, hence
$A=4,000\left(1+\frac{0.06}{52}\right)^{(52)(0.5)}$
(B) $n=(52)(10)=520$, hence
$A=4,000\left(1+\frac{0.06}{52}\right)^{520}$
$=\$ 4,121.75$
$=\$ 7,285.95$

Section 5-2

1. Doubling time is the time it takes a population to double. Half-life is the time it takes for half of an initial quantity of a radioactive substance to decay.
2. Exponential growth is the simple model $A=A_{0} e^{k t}$, i.e. unlimited growth. Limited growth models more realistically incorporate the fact that there is a reasonable maximum value for A.
3. Use the doubling time model $A=A_{0}(2)^{t d}$ with

$$
A_{0}=200, d=5 . \quad A=200(2)^{t / 5}
$$

9. Use the half-life model $A=A_{0}\left(\frac{1}{2}\right)^{t / h}$ with

$$
A_{0}=100, h=6 \cdot A=100\left(\frac{1}{2}\right)^{t / 6}
$$

7. Use the continuous growth model $A=A_{0} e^{r t}$ with

$$
A_{0}=2,000, r=0.02 . \quad A=2,000 e^{0.02 t}
$$

11. Use the exponential decay model $A=A_{0} e^{-k t}$ with

$$
A_{0}=4, k=0.124 . A=4 e^{-0.124 t}
$$

13.

n	L
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1,024

17. Use the doubling time model $A=A_{0}\left(\frac{1}{2}\right)^{t / h}$
with $A_{0}=2,200, d=2 . \quad A=2,200(2)^{t / 2}$ where t is years after 1970 .
(A) For $t=20: \quad A=2,200(2)^{20 / 2}=2,252,800$
(B) For $t=35$: $\quad A=2,200(2)^{35 / 2}=407,800,360$
15. Use the doubling time model: $P=P_{0} 2^{t / d}$

Substituting $P_{0}=10$ and $d=2.4$, we have $P=10\left(2^{t / 2.4}\right)$
(A) $t=7$, hence $P=10\left(2^{7 / 2.4}\right)$ $=75.5 \quad 76$ flies
(B) $t=14$, hence $P=10\left(2^{14 / 2.4}\right)$

$$
=570.2 \quad 570 \text { flies }
$$

19. Use the half-life model $A=A_{0}\left(\frac{1}{2}\right)^{t / h}=A_{0} 2^{-t / h}$ Substituting $A_{0}=25$ and $h=12$, we have $A=25\left(2^{-t / 12}\right)$
(A) $t=5$, hence $A=25\left(2^{-5 / 12}\right)=19$ pounds
(B) $t=20$, hence $A=25\left(2^{-20 / 12}\right)=7.9$ pounds
20. Use the continuous growth model $A=A_{0} e^{r t}$ with $A_{0}=6.8, r=0.01188, t=2020-2008=12$

$$
A=6.8 e^{0.01188(12)}=7.8 \text { billion }
$$

23. Use the continuous growth model $A=A_{0} e^{r t}$.

Let $A_{1}=$ the population of Russia and $A_{2}=$ the population of Nigeria.

For Russia, $A_{0}=1.43 \times 10^{8}, r=-0.0037$

$$
A_{1}=1.43 \times 10^{8} e^{-0.0037 t}
$$

For Nigeria, $A_{0}=1.29 \times 10^{8}, r=0.0256$

$$
A_{2}=1.29 \times 10^{8} e^{0.0256 t}
$$

Below is a graph of A_{1} and A_{2}.

From the graph, assuming $t=0$ in 2005, it appears that the two populations became equal when t was approximately 3.5 , in 2008. After that the population of Nigeria will be greater than that of Russia.
25. A table of values can be generated by a graphing calculator and yields

t	P
0	75
10	72
20	70
30	68
40	65
50	63
60	61
70	59
80	57
90	55
100	53

29. Use the continuous growth model $A=A_{0} e^{r t}$ with

$$
A_{0}=33.2 \text { million, } r=0.0237
$$

(A) In 2014, assuming $t=0$ in 2007, substitute $t=7$.

$$
A=33.2 e^{0.0237(7)}=39.2 \text { million }
$$

27. $I=I_{0} e^{-0.00942 d}$
(A) $d=50 \quad I=I_{0} e^{-0.00942(50)}=0.62 I_{0} \quad 62 \%$
(B) $d=100 I=I_{0} e^{-0.00942(100)}=0.39 I_{0} \quad 39 \%$
28. $T=T_{m}+\left(T_{0}-T_{m}\right) e^{-k t}$
$T_{m}=40^{\circ} \quad T_{0}=72^{\circ} \mathrm{k}=0.4 t=3$
$T=40+(72-40) e^{-0.4(3)}$
$T=50^{\circ}$
(B) In 2020, substitute $t=13$.

$$
A=33.2 e^{0.0237(13)}=45.2 \text { million }
$$

33. As t increases without bound, $e^{-0.2 t}$ approaches 0 , hence $q=0.0009\left(1-e^{-0.2 t}\right)$ approaches 0.0009 . Hence 0.0009 coulomb is the maximum charge on the capacitor.
34. (A) Examining the graph of $N(t)$, we obtain the graphs below.

After 2 years, 25 deer will be present. After 6 years, 37 deer will be present.
(B) Applying a built-in routine, we obtain the graph at the right. It will take 10 years for the herd to grow to 50 deer.
(C) As t increases without bound, $e^{-0.14 t}$ approaches 0 , hence $N=\frac{100}{1+4 e^{-0.14 t}}$ approaches 100 . Hence 100 is the number of deer the island can support.

37.

Enter the data.

Expreg

$$
\begin{aligned}
& \because=\exists \mathrm{F} \mathrm{~b} \times \mathrm{x}
\end{aligned}
$$

Compute the regression equation.

The model gives $y=14910.20311(0.8162940177)^{x}$.
Clearly, when $x=0, y=\$ 14,910$ is the estimated purchase price. Applying a built-in routine, we obtain the graph at the right. When $x=10$, the estimated value of the van is $\$ 1,959$.

39. (A) The independent variable is years since 1980 , so enter $0,5,10,15,20$, and 25 as L_{1}. The dependent variable is power generation in North America, so enter the North America column as L_{2}. Then use the logistic regression command from the STAT CALC menu.

Logistic
$3=6 / 21+36(-6 \times 2$
$3=2.270121518$
$6=1691970979$
$c=905.7755544$

The model is

$$
y=\frac{906}{1+2.27 e^{-0.169 x}}
$$

(B) Since $x=0$ corresponds to 1980, use $x=30$ to predict power generation in 2010.

$$
y=\frac{906}{1+2.27 e^{-0.169(30)}}=893.3 \text { billion kilowatt hours }
$$

Use $x=40$ to predict power generation in 2020 .

$$
y=\frac{906}{1+2.27 e^{-0.169(40)}}=903.6 \text { billion kilowatt hours }
$$

Section 5-3

1. The exponential function $f(x)=b^{x}$ for $b>0, b \neq 1$ and the logarithmic function $g(x)=\log _{b} x$ are inverse functions for each other.
2. The range of the exponential function is the positive real numbers, hence the domain of the logarithmic function must also be the positive real numbers.
3. $\log _{5} 3=\log _{e} 3 / \log _{e} 5$ or $\log _{10} 3 / \log _{10} 5$.
$\begin{array}{lll}\text { 7. } 81=3^{4} & \text { 9. } 0.001=10^{-3} & \text { 11. } \frac{1}{36}=6^{-2} \\ \text { 19. Make a table of values for each function: }\end{array}$

x	$f(x)=3^{x}$	x	$f^{-1}(x)=\log _{3} x$
-3	$1 / 27$	$1 / 27$	-3
-2	$1 / 9$	$1 / 9$	-2
-1	$1 / 3$	$1 / 3$	-1
0	1	1	0
1	3	3	1
2	9	9	2
3	27	27	3

21. Make a table of values for each function:

x	$f(x)=(2 / 3)^{x}$	x	$f^{-1}(x)=\log _{2 / 3} x$
-3	$27 / 8$	$27 / 8$	-3
-2	$9 / 4$	$9 / 4$	-2
-1	$3 / 2$	$3 / 2$	-1
0	1	1	0
1	$2 / 3$	$2 / 3$	1
2	$4 / 9$	$4 / 9$	2
3	$8 / 27$	$8 / 27$	3

23.0
25.1
27.4
29. $\log _{10} 0.01=\log _{10} 10^{-2}=-2$
31. $\log _{3} 27=\log _{3} 3^{3}=3$
33. $\log _{1 / 2} 2=\log _{1 / 2}\left(\frac{1}{2}\right)^{-1}=-1$
35.5
37. $\log _{5} \sqrt[3]{5}=\log _{5} 5^{1 / 3}=\frac{1}{3}$
39. 4.6923
41. 3.9905
43. $\log _{7} 13=\frac{\ln 13}{\ln 7}=1.3181$
using the change of base formula
47. $x=10^{5.3027}=200,800$
51. $x=e^{3.8655}=47.73$
55. Write $\log _{2} x=2$ in equivalent exponential form.

$$
x=2^{2}=4
$$

59. Write $\log _{b} 16=2$ in equivalent exponential form.

$$
\begin{aligned}
16 & =b^{2} \\
b^{2} & =16 \\
b & =4
\end{aligned}
$$

since bases are required to be positive
63. Write $\log _{4} x=\frac{1}{2}$ in equivalent exponential form.

$$
x=4^{1 / 2}=2
$$

67. Write $\log _{b} 1000=\frac{3}{2}$ in equivalent exponential form

$$
\begin{aligned}
1000 & =b^{3 / 2} \\
10^{3} & =b^{3 / 2} \\
\left(10^{3}\right)^{2 / 3} & =\left(b^{3 / 2}\right)^{2 / 3}
\end{aligned}
$$

(If two numbers are equal the results are equal if they are raised to the same exponent.)

$$
\begin{aligned}
10^{3}(2 / 3) & =b^{3 / 2(2 / 3)} \\
10^{2} & =b \\
b & =100
\end{aligned}
$$

73. 4.959
74. 7.861
75. 2.280
76. $\log x-\log y$
77. $\log \left(x^{4} y^{3}\right)=\log x^{4}+\log y^{3}=4 \log x+3 \log y \quad$ 83. $\ln \left(\frac{x}{y}\right)$
78. $2 \ln x+5 \ln y-\ln z=\ln x^{2}+\ln y^{5}-\ln z=\ln \left(x^{2} y^{5}\right)-\ln z \quad$ 87. $\log (x y)=\log x+\log y=-2+3=1$

$$
=\ln \left(\frac{x^{2} y^{5}}{z}\right)
$$

89. $\log \left(\frac{\sqrt{x}}{y^{3}}\right)=\log \sqrt{x}-\log y^{3}=\frac{1}{2} \log x-3 \log y=\frac{1}{2}(-2)-3 \cdot 3=-10$
90. The graph of g is the same as the graph of f shifted upward 3 units; g is increasing.
Domain: $(0, \infty)$ Vertical asymptote: $x=0$

91. The graph of g is the same as the graph of f reflected through the x axis and shifted downward 1 unit; g is decreasing.
Domain: $(0, \infty)$ Vertical asymptote: $x=0$

92. The graph of g is the same as the graph of f shifted 2 units to the right; g is decreasing. Domain: $(2, \infty)$ Vertical asymptote: $x=2$

93. The graph of g is the same as the graph of f reflected through the x axis, stretched vertically by a factor of 3 , and shifted upward 5 units. g is decreasing. Domain: $(0, \infty)$
Vertical asymptote: $x=0$

94. Write $y=\log _{5} x$

In exponential form:

$$
5^{y}=x
$$

Interchange x and y :

$$
5^{x}=y
$$

Therefore $f^{-1}(x)=5^{x}$.
103. (A)Write $y=\log _{3}(2-x)$

In exponential form:

$$
\begin{aligned}
3^{y} & =2-x \\
x & =2-3^{y}
\end{aligned}
$$

Interchange x and y :

$$
y=2-3^{x}
$$

Therefore, $f^{1}(x)=2-3^{x}$
101. Write $y=4 \log _{3}(x+3)$

$$
\frac{y}{4}=\log _{3}(x+3)
$$

In exponential form:

$$
\begin{aligned}
3^{y / 4} & =x+3 \\
x & =3^{y / 4}-3
\end{aligned}
$$

Interchange x and y :

$$
y=3^{x / 4}-3
$$

Therefore $f^{1}(x)=3^{x / 4}-3$
(B) The graph is the same as the graph of $y=3^{x}$ reflected through the x axis and shifted 2 units upward.

(C)

105. The inequality sign in the last step reverses because $\log \frac{1}{3}$ is negative.
107.

109.

111. Let $u=\log _{b} M$ and $v=\log _{b} N$. Changing each equation to exponential form, $b^{u}=M$ and $b^{v}=N$. Then we can write M / N as $\frac{M}{N}=\frac{b^{u}}{b^{v}}=b^{u-v}$ using a familiar property of exponents. Now change this equation to logarithmic form: $\log _{b}\left(\frac{M}{N}\right)=u-v$
Finally, recall the way we defined u and v in the first line of our proof: $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$

Section 5-4

1. Answers will vary.
2. The intensity of a sound and the energy released by an earthquake can vary from extremely small to extremely large. A logarithmic scale can condense this variation into a range that can be easily comprehended.
3. We use the decibel formula $D=10 \log \frac{I}{I_{0}}$
(A) $I=I_{0}$ $D=10 \log \frac{I_{0}}{I_{0}}$
$D=10 \log 1$ $D=0$ decibels
(B) $I_{0}=1.0 \times 10^{-12} \quad I=1.0$

$$
D=10 \log \frac{1.0}{1.0 \times 10^{-12}}
$$

$D=120$ decibels
9. We use the magnitude formula

$$
M=\frac{2}{3} \log \frac{E}{E_{0}} \text { with } E=1.99 \times 10^{-17}, E_{0}=104.40
$$

$$
M=\frac{2}{3} \log \frac{1.99 \times 10^{-17}}{10^{4.40}}=8.6
$$

11. We use the magnitude formula $M=\frac{2}{3} \log \frac{E}{E_{0}}$

For the Long Beach earthquake,

$$
\begin{aligned}
& 6.3=\frac{2}{3} \log \frac{E_{1}}{E_{0}} \\
& 9.45=\log \frac{E_{1}}{E_{0}}
\end{aligned}
$$

(Change to exponential form)
For the Anchorage earthquake,
$\frac{E_{1}}{E_{0}}=10^{9.45}$
$E_{1}=E_{0} \cdot 10^{9.45}$

$$
\begin{aligned}
\frac{E_{2}}{E_{0}} & =10^{12.45} \\
E_{2} & =E_{0} \cdot 10^{12.45}
\end{aligned}
$$

$$
\begin{aligned}
8.3 & =\frac{2}{3} \log \frac{E_{2}}{E_{0}} \\
12.45 & =\log \frac{E_{2}}{E_{0}}
\end{aligned}
$$

(Change to exponential form)

Now we can compare the energy levels by dividing the more powerful (Anchorage) by the less (Long Beach):
$\frac{E_{2}}{E_{1}}=\frac{E_{0} \cdot 10^{12.45}}{E_{0} \cdot 10^{0.45}}=10^{3}$
$E_{2}=10^{3} E_{1}$, or 1000 times as powerful
13. Use the magnitude formula $M=\frac{2}{3} \log \frac{E}{E_{0}}$ with $E=1.34 \times 10^{14}, E_{0}=10^{4.40}: M=\frac{2}{3} \log \frac{1.34 \times 10^{14}}{10^{4.40}}=6.5$
15. Use the magnitude formula $M=\frac{2}{3} \log \frac{E}{E_{0}}$ with $E=2.38 \times 10^{21}, E_{0}=10^{4.40}: M=\frac{2}{3} \log \frac{2.38 \times 10^{21}}{10^{4.40}}=11.3$
17. We use the rocket equation.
19. (A) $p H=-\log \left[H^{+}\right]=-\log \left(4.63 \times 10^{-9}\right)=8.3$.

$$
\begin{aligned}
v & =c \ln \frac{W_{t}}{W_{b}} \\
v & =2.57 \ln (19.8) \\
v & =7.67 \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

Since this is greater than 7, the substance is basic.
(B) $p H=-\log \left[H^{+}\right]=-\log \left(9.32 \times 10^{-4}\right)=3.0$

Since this is less than 7, the substance is acidic.
21. Since $p H=-\log \left[H^{+}\right]$, we have

$$
\begin{aligned}
5.2 & =-\log \left[H^{+}\right], \text {or } \\
{\left[H^{+}\right] } & =10^{-5.2}=6.3 \times 10^{-6} \text { moles per liter }
\end{aligned}
$$

23. $m=6-2.5 \log \frac{L}{L_{0}}$
(B) We compare L_{1} for $m=1$ with L_{2} for $m=6$
(A) We find m when $L=L_{0}$

$$
1=6-2.5 \log \frac{L_{1}}{L_{0}}
$$

$$
6=6-2.5 \log \frac{L_{2}}{L_{0}}
$$

$$
\begin{array}{lll}
m=6-2.5 \log \frac{L_{0}}{L_{0}} & -5=-2.5 \log \frac{L_{1}}{L_{0}} & 0=-2.5 \log \frac{L_{2}}{L_{0}} \\
m=6-2.5 \log 1 & 2=\log \frac{L_{1}}{L_{0}} & 0=\log \frac{L_{2}}{L_{0}} \\
m=6 & \frac{L_{1}}{L_{0}}=10^{2} & \frac{L_{2}}{L_{0}}=1 \\
& L_{1}=100 L_{0} & L_{2}=L_{0}
\end{array}
$$

Hence $\frac{L_{1}}{L_{2}}=\frac{100 L_{0}}{L_{0}}=100$. The star of magnitude 1 is 100 times brighter.
25. (A) Enter the years since 1995 as L_{1}. Enter the values shown in the column headed " $\%$ with home access" as L_{2}. Use the logarithmic regression model from the STAT CALC menu.

The model is $y=11.9+24.1 \ln x$. Evaluating this for $x=13$ (year 2008) yields 73.7%. Evaluating for $=20$ (year 2015) yields 84.1%.
(B) No; the predicted percentage goes over 100 sometime around 2034.

Section 5-5

1. The logarithm function is the inverse of the exponential function, moreover, $\log _{b} M^{p}=p \log _{b} M$. This property of logarithms can often be used to get a variable out of an exponent in solving an equation.
2. If $\log _{b} u=\log _{b} v$, then $u=v$ because the logarithm is a one-to-one function.
3. $(\ln x)^{2}$ means to take the logarithm of x, then square the result.
$\ln x^{2}$ means to square x, then take the logarithm of the result.
4. $10^{-x}=0.0347$
$-x=\log _{10} 0.0347$
$x=-\log _{10} 0.0347$
$x=1.46$
5. $10^{3 x+1}=92$
$3 x+1=\log _{10} 92$ $3 x=\log _{10} 92-1$
$x=\frac{\log _{10} 92-1}{3}$
$x=0.321$
6. $e^{x}=3.65$
7. $e^{2 x-1}+68=207$
$x=$
ln
3.65
$x=$
1.29
8. $\log (t-4)=-1$
$10^{-1}=t-4$
$t=4+10^{-1}$

$$
\begin{gathered}
5^{2}=x \\
x=25
\end{gathered}
$$

$t=4+\frac{1}{10}$
21. $\log 5+\log x=2$
$\begin{aligned} \log (5 x) & =2 \\ 5 x & =10^{2}\end{aligned}$
$5 x=10^{2}$
$5 x=100$
$x=20$
$-x \ln 2=\ln \frac{0.426}{8}$

$$
\begin{aligned}
& x=\frac{\ln \frac{0.426}{8}}{-\ln 2} \\
& x=4.23
\end{aligned}
$$

23. $\log x+\log (x-3)=1$

Common Error:

$$
\begin{aligned}
\log [x(x-3)] & =1 \\
x(x-3) & =10^{1} \\
x^{2}-3 x & =10 \\
x^{2}-3 x-10 & =0 \\
(x-5)(x+2) & =0 \\
x=5 \text { or } & -2
\end{aligned}
$$

$$
\log (x-3) \neq \log x-\log 3
$$

Check:
$\log 5+\log (5-3) \stackrel{\sqrt{ }}{=} 1$
$\log (-2)+\log (-2-3)$ is not
defined.
$x=5$
25. $\log (x+1)-\log (x-1)=1$

$$
\begin{aligned}
\log \frac{x+1}{x-1} & =1 \\
\frac{x+1}{x-1} & =10^{1} \\
\frac{x+1}{x-1} & =10 \\
x+1 & =10(x-1) \\
x+1 & =10 x-10 \\
11 & =9 x \\
x & =\frac{11}{9}
\end{aligned}
$$

Common Error:

$$
\frac{x+1}{x-1} \neq \log 1
$$

Check:

$$
\begin{aligned}
\log \left(\frac{11}{9}+1\right)-\log \left(\frac{11}{9}-1\right) & \stackrel{?}{=} 1 \\
\log \frac{20}{9}-\log \frac{2}{9} & \stackrel{?}{=} 1 \\
\log 10 & \stackrel{\bigvee}{=} 1
\end{aligned}
$$

27.

$$
\begin{aligned}
2 & =1.05^{x} \\
\ln 2 & =x \ln 1.05 \\
\frac{\ln 2}{\ln 1.05} & =x \\
x & =14.2
\end{aligned}
$$

29. $e^{-1.4 x}+5=0$
No solution. Both terms on the left side are always positive, so they can never add to 0 .
30. $\quad 123=500 e^{-0.12 x}$
$\frac{123}{500}=e^{-0.12 x}$
$\ln \left(\frac{123}{500}\right)=-0.12 x$

$$
\begin{aligned}
\frac{\ln \left(\frac{123}{500}\right)}{-0.12} & =x \\
x & =11.7
\end{aligned}
$$

33. $e^{-x^{2}}=0.23$

$$
\begin{aligned}
-x^{2} & =\ln 0.23 \\
x^{2} & =-\ln 0.23 \\
x & = \pm \sqrt{-\ln 0.23} \\
x & = \pm 1.21
\end{aligned}
$$

35. $\quad \log (5-2 x)=\log (3 x+1)$

$$
\begin{aligned}
5-2 x & =3 x+1 \\
4 & =5 x \\
x & =\frac{4}{5}
\end{aligned}
$$

37. $\quad \log x-\log 5=\log 2-\log (x-3)$

$$
\begin{aligned}
\log \frac{x}{5} & =\log \frac{2}{x-3} \\
\frac{x}{5} & =\frac{2}{x-3}
\end{aligned}
$$

Excluded value: $x \neq 3$

$$
\begin{aligned}
5(x-3) \frac{x}{5} & =5(x-3) \frac{2}{x-3} & & \\
(x-3) x & =10 & & \\
x^{2}-3 x & =10 & & \text { Check: } \\
x^{2}-3 x-10 & =0 & & \log 5-\log 5 \stackrel{V}{=} \log 2-\log 2 \\
(x-5)(x+2) & =0 & & \log (-2) \text { is not defined } \\
x & =5,-2 & &
\end{aligned}
$$

Solution: 5
39. $\quad \ln x=\ln (2 x-1)-\ln (x-2)$

$$
\begin{aligned}
\ln x & =\ln \frac{2 x-1}{x-2} \\
x & =\frac{2 x-1}{x-2}
\end{aligned}
$$

Excluded value: $x \neq 2$

$$
\begin{aligned}
x(x-2) & =(x-2) \frac{2 x-1}{x-2} \\
x(x-2) & =2 x-1 \\
x^{2}-2 x & =2 x-1 \\
x^{2}-4 x+1 & =0 \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x & =\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(1)}}{2(1)} \\
x & =\frac{4 \pm \sqrt{12}}{2}=2 \pm \sqrt{3}
\end{aligned}
$$

Check:

$$
\begin{aligned}
& \ln (2+\sqrt{3}) \stackrel{?}{=} \ln [2(2+\sqrt{3})-1] \\
&-\ln [(2+\sqrt{3})-2] \\
& \ln (2+\sqrt{3}) \stackrel{?}{=} \ln (3+2 \sqrt{3})-\ln \sqrt{3} \\
& \ln (2+\sqrt{3}) \stackrel{?}{=} \ln \left(\frac{3+2 \sqrt{3}}{\sqrt{3}}\right) \\
& \ln (2+\sqrt{3}) \stackrel{V}{=} \ln (\sqrt{3}+2) \\
& \ln (x-2) \text { is not defined if } x=2-\sqrt{3} \\
& \text { Solution: } 2+\sqrt{3}
\end{aligned}
$$

41.

$$
\begin{aligned}
& \log (2 x+1)=1-\log (x-1) \\
& \log (2 x+1)+\log (x-1)=1 \\
& \log [(2 x+1)(x-1)]=1 \\
&(2 x+1)(x-1)=10 \\
& 2 x^{2}-x-1=10 \\
& 2 x^{2}-x-11=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& a=2, b=-1, c=-11 \\
& x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(2)(-11)}}{2(2)} \\
& x=\frac{1 \pm \sqrt{89}}{4}
\end{aligned}
$$

Check: $\log \left(2 \frac{1+\sqrt{89}}{4}+1\right) \stackrel{?}{=} 1-\log \left(\frac{1+\sqrt{89}}{4}-1\right)$

$$
\log \left(\frac{1+\sqrt{89}+2}{2}\right) \stackrel{?}{=} 1-\log \left(\frac{1+\sqrt{89}-4}{4}\right)
$$

$$
\log \left(\frac{3+\sqrt{89}}{2}\right) \stackrel{?}{=} 1-\log \left(\frac{\sqrt{89}-3}{4}\right)
$$

$$
\log \left(\frac{3+\sqrt{89}}{2}\right) \stackrel{?}{=} \log 10-\log \left(\frac{\sqrt{89}-3}{4}\right)
$$

$$
\stackrel{?}{=} \log \left(\frac{40}{\sqrt{89}-3}\right)
$$

$$
\stackrel{?}{=} \log \left[\frac{40(\sqrt{89}+3)}{89-9}\right]
$$

$$
\stackrel{\bigvee}{=} \log \left(\frac{\sqrt{89}+3}{2}\right)
$$

$\log (x-1)$ is not defined if $x=\frac{1-\sqrt{89}}{4}$. Solution: $x=\frac{1+\sqrt{89}}{4}$
43. $\quad \ln (x+1)=\ln (3 x+3)$

$$
\begin{aligned}
x+1 & =3 x+3 \\
-2 x & =2 \\
x & =-1
\end{aligned}
$$

Check: $\ln (-1+1)$ is not defined
No solution.
45.

$$
\begin{array}{rlr}
(\ln x)^{3} & =\ln x^{4} \\
(\ln x)^{3} & =4 \ln x & \\
(\ln x)^{3}-4 \ln x & =0 & \\
\ln x\left[(\ln x)^{2}-4\right] & =0 & \\
\ln x(\ln x-2)(\ln x+2) & =0 & \\
\ln x & \ln x-2 & =0 \\
x=1 & \ln x & =2
\end{array}
$$

Check:

$$
\begin{aligned}
(\ln 1)^{3} & \stackrel{?}{=} \ln 1^{4} \\
0 & \stackrel{V}{=} 0
\end{aligned}
$$

$\left(\ln e^{2}\right)^{3} \stackrel{?}{=} \ln \left(e^{2}\right)^{4}$
$8=8$
$\left(\ln e^{-2}\right)^{3} \stackrel{?}{=} \ln \left(e^{-2}\right)^{4}$
$-8 \stackrel{\vee}{=}-8$

Solution: $1, e^{2}, e^{-2}$
49.
$A=P e^{r t}$
$\frac{A}{P}=e^{r t}$
$\ln \frac{A}{P}=r t$
$\frac{1}{t} \ln \frac{A}{P}=r$
$r=\frac{1}{t} \ln \frac{A}{P}$
51. $D=10 \log \frac{I}{I_{0}}$
$\frac{D}{10}=\log \frac{I}{I_{0}}$
$\frac{I}{I_{0}}=10^{D / 10}$
$I=I_{0}\left(10^{D / 10}\right)$
53. $M=6-2.5 \log \frac{I}{I_{0}}$
$6-M=2.5 \log \frac{I}{I_{0}}$
$\frac{6-M}{2.5}=\log \frac{I}{I_{0}}$
$\frac{I}{I_{0}}=10^{(6-\mathrm{M} / 2.5}$
$I=I_{0}\left[10^{(6-M / 2.5}\right]$
55.

$$
\begin{aligned}
I & =\frac{E}{R}\left(1-e^{-R t / L}\right) \\
R I & =E\left(1-e^{-R t / L}\right) \\
\frac{R I}{E} & =1-e^{-R t / L} \\
\frac{R I}{E}-1 & =-e^{-R t / L} \\
-\left(\frac{R I}{E}-1\right) & =e^{-R t / L} \\
-\frac{R I}{E}+1 & =e^{-R t / L} \\
1-\frac{R I}{E} & =e^{-R t / L} \\
\ln \left(1-\frac{R I}{E}\right) & =-\frac{R t}{L} \\
-\frac{L}{R} \ln \left(1-\frac{R I}{E}\right) & =t \\
t & =-\frac{L}{R} \ln \left(1-\frac{R I}{E}\right)
\end{aligned}
$$

59. $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
$y=\frac{e^{x}-\frac{1}{e^{x}}}{e^{x}+\frac{1}{e^{x}}}$
$y=\frac{e^{x} e^{x}-\frac{1}{e^{x}} e^{x}}{e^{x} e^{x}+\frac{1}{e^{x}} e^{x}}$
$y=\frac{e^{2 x}-1}{e^{2 x}+1}$
$\begin{aligned} y\left(e^{2 x}+1\right) & =e^{2 x}-1 \\ y e^{2 x}+y & =e^{2 x}-1\end{aligned}$
$y e^{2 x}+y=e^{2 x}-1$
$1+y=e^{2 x}-y e^{2 x}$
$1+y=(1-y) e^{2 x}$

$$
e^{2 x}=\frac{1+y}{1-y}
$$

$$
2 x=\ln \frac{1+y}{1-y}
$$

$$
x=\frac{1}{2} \ln \frac{1+y}{1-y}
$$

57. $y=\frac{e^{x}+e^{-x}}{2}$

$$
\begin{aligned}
2 y & =e^{x}+e^{-x} \\
2 y & =e^{x}+\frac{1}{e^{x}} \\
2 y e^{x} & =\left(e^{x}\right)^{2}+1 \\
0 & =\left(e^{x}\right)^{2}-2 y e^{x}+1
\end{aligned}
$$

This equation is quadratic in e^{x}

$$
\begin{aligned}
& e^{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \begin{array}{l}
a=1, \\
b=-2 y, \\
c=1
\end{array} \\
& e^{x}=\frac{-(-2 y) \pm \sqrt{(-2 y)^{2}-4(1)(1)}}{2(1)} \\
& e^{x}=\frac{2 y \pm \sqrt{4 y^{2}-4}}{2} \\
& e^{x}=\frac{2\left(y \pm \sqrt{y^{2}-1}\right)}{2} \\
& e^{x}=y \pm \sqrt{y^{2}-1} \\
& x=\ln \left(y \pm \sqrt{y^{2}-1}\right)
\end{aligned}
$$

61. Graphing $y=2^{-x}-2 x$ and applying a built-in routine, we obtain
0

The required solution of $2^{-x}-2 x=0,0 \leq x \leq 1$, is 0.38 .
63. Graphing $y=e^{-x}-x$ and applying a built-in routine, we obtain
0

The required solution of $e^{-x}-x=0,0 \leq x \leq 1$, is 0.57 .
65. Graphing $y=\ln x+2 x$ and applying a built-in routine, we obtain

The required solution of $\ln x+2 x=0$, $0 \leq x \leq 1$, is 0.43 .
69. To find the doubling time we replace A in $A=P(1+0.07)^{n}$ with $2 P$ and solve for n.

$$
\begin{aligned}
2 P & =P(1.07)^{n} \\
2 & =(1.07)^{n} \\
\ln 2 & =n \ln 1.07 \\
n & =\frac{\ln 2}{\ln 1.07}
\end{aligned}
$$

$$
n=10 \text { years to the nearest year }
$$

67. Graphing $y=\ln x+e^{x}$ and applying a built-in routine, we obtain

The required solution of $\ln x+e^{x}=0$, $0 \leq x \leq 1$, is 0.27 .
71. We solve $A=P e^{r t}$ for r, with $A=2,500$, $P=1,000, t=10$
$2,500=1,000 e^{r(10)}$
$2.5=e^{10 r}$
$10 r=\ln (2.5)$
$r=\frac{1}{10} \ln 2.5=0.0916$ or 9.16%
73. (A) We're given $P_{0}=10.5$ (we could use 10.5 million, but if you look carefully at the calculations below, you'll see that the millions will cancel out anyhow), 11.3 for P, and 2 for t (since May 2007 is two years after May 2005).

$$
\begin{aligned}
11.3 & =10.5 e^{r .2} \\
\frac{11.3}{10.5} & =e^{2 r} \\
\ln \left(\frac{11.3}{10.5}\right) & =2 r \\
r & =\frac{\ln \left(\frac{11.3}{10.5}\right)}{2} \approx 0.0367 \text { The annual growth rate is } 3.67 \% .
\end{aligned}
$$

(B) $P=10.5 e^{0.0367 t}$; plug in 20 for P and solve for t. $20=10.5 e^{0.0367 t}$

$$
\frac{20}{10.5}=e^{0.0367 t}
$$

$$
\ln \left(\frac{20}{10.5}\right)=0.0367 t
$$

$$
t=\frac{\ln \left(\frac{20}{10.5}\right)}{0.0367} \approx 17.6
$$

The illegal immigrant population is predicted to reach 20 million near the end of 2022, which is 17.6 years after May 2005.
75. We solve $P=P_{0} e^{r t}$ for t with $P=2 P_{0}, r=0.0114$.

$$
\begin{aligned}
2 P_{0} & =P_{0} e^{0.0114 t} \\
2 & =e^{0.0114 t} \\
\ln 2 & =0.0114 t \\
t & =\frac{\ln 2}{0.0114} \\
t & =61 \text { years to the nearest year }
\end{aligned}
$$

77. We're given $A_{0}=5, A=1, t=6$:

$$
\begin{aligned}
A & =A_{0}\left(\frac{1}{2}\right)^{t / h} \\
1 & =5\left(\frac{1}{2}\right)^{6 / h} \\
\frac{1}{5} & =\left(\frac{1}{2}\right)^{6 / h} \\
\ln \frac{1}{5} & =\ln \left(\frac{1}{2}\right)^{6 / h} \\
\ln \frac{1}{5} & =\frac{6}{h} \ln \left(\frac{1}{2}\right) \\
h \cdot \ln \frac{1}{5} & =6 \ln \left(\frac{1}{2}\right) \\
h & =\frac{6 \ln (1 / 2)}{\ln (1 / 5)} \approx 2.58
\end{aligned}
$$

The half-life is about 2.58 hours.
79. Let A_{0} represent the amount of Carbon-14
originally present. Then the amount left in 2003 was $0.289 A_{0}$. Plug this in for A, and solve for t :

$$
\begin{aligned}
0.289 \mathrm{~A}_{0} & =A_{0} e^{-0.0000124 t} \\
0.289 & =e^{-0.000124 t} \\
\ln 0.289 & =\ln e^{-0.000124 t} \\
\ln 0.289 & =-0.000124 t \\
t & =\frac{\ln 0.289}{-0.000124} \approx 10,010
\end{aligned}
$$

The sample was about 10,010 years old.
83. We solve $q=0.0009\left(1-e^{-0.2 t}\right)$
for t with $q=0.0007$

$$
\begin{aligned}
0.0007 & =0.0009\left(1-e^{-0.2 t}\right) \\
\frac{0.0007}{0.0009} & =1-e^{-0.2 t} \\
\frac{7}{9} & =1-e^{-0.2 t} \\
-\frac{2}{9} & =-e^{-0.2 t} \\
\frac{2}{9} & =e^{-0.2 t} \\
\ln \frac{2}{9} & =-0.2 t \\
t & =\frac{\ln \frac{2}{9}}{-0.2} \\
t & =7.52 \text { seconds }
\end{aligned}
$$

81. Let A_{0} represent the amount of Carbon-14 originally present. Then the amount left in 2004 was $0.883 A_{0}$. Plug this in for A, and solve for t :

$$
\begin{aligned}
0.883 A_{0} & =A_{0} e^{-0.000122 t} \\
0.883 & =e^{-0.000124 t} \\
\ln 0.883 & =\ln e^{-0.000} 124 t \\
\ln 0.883 & =-0.000124 t \\
t & =\frac{\ln 0.883}{-0.000124} \approx 1,003
\end{aligned}
$$

It was 1,003 years old in 2004 , so it was made in 1001.
85. First, we solve $T=T_{m}+\left(T_{0}-T_{m}\right) e^{-k t}$ for k, with

$$
\begin{aligned}
T=61.5^{\circ}, & T_{m}=40^{\circ}, T_{0}=72^{\circ}, t=1 \\
61.5 & =40+(72-40) e^{-k(1)} \\
21.5 & =32 e^{-k} \\
\frac{21.5}{32} & =e^{-k} \\
\ln \frac{21.5}{32} & =-k \\
k & =-\ln \frac{21.5}{32} \\
k & =0.40
\end{aligned}
$$

Now we solve $T=T_{m}+\left(T_{0}-T_{m}\right) e^{-0.40 t}$ for t, with $T=50^{\circ}, T_{m}=40^{\circ}, T_{0}=72^{\circ}$

$$
50=40+(72-40) e^{-0.40 t}
$$

$$
10=32 e^{-0.40 t}
$$

$$
\frac{10}{32}=e^{-0.40 t}
$$

$$
\ln \frac{10}{32}=-0.40 t
$$

$$
t=\frac{\ln 10 / 32}{-0.40}
$$

$$
t=2.9 \text { hours }
$$

87. (A) Plug in $M=7.0$ and solve for E :

$$
\begin{aligned}
7 & =\frac{2}{3} \log \frac{E}{10^{4.40}} \\
\frac{21}{2} & =\log \frac{E}{10^{4.4}} \\
10^{21 / 2} & =\frac{E}{10^{4.4}} \\
E & =10^{21 / 2} \cdot 10^{4.4} \approx 7.94 \times 10^{14} \text { joules }
\end{aligned}
$$

89. First, find the energy released by one magnitude 7.5 earthquake:

$$
\begin{aligned}
7.5 & =\frac{2}{3} \log \frac{E}{10^{4.40}} \\
11.25 & =\log \frac{E}{10^{4.4}}
\end{aligned}
$$

(B) $\frac{7.94 \times 11^{14} \text { joules }}{2.88 \times 10^{14} \text { joules/day }}=2.76$ days

Finally, divide by the energy consumption per year:
$\frac{5.364 \times 10^{16} \text { joules }}{1.05 \times 10^{17} \text { joules/year }}=0.510$
So this energy could power the U.S. for 0.510 years, or about 186 days.

$$
\begin{aligned}
10^{11.25} & =\frac{E}{10^{4.4}} \\
E & =10^{11.25} \cdot 10^{4.4} \approx 4.47 \times 10^{15} \text { joules }
\end{aligned}
$$

Now multiply by twelve to get the energy released by twelve such earthquakes:
$12 \cdot 4.47 \times 10^{15}=5.364 \times 10^{16}$

CHAPTER 5 REVIEW

1. (A) The graph of $y=\log _{2} x$ passes through $(1,0)$ and $(2,1)$. This corresponds to graph m.
(B) The graph of $y=0.5^{x}$ passes through $(0,1)$ and $(1,0.5)$. This corresponds to graph f .
(C) The graph of $y=\log _{0.5} x$ passes through $(1,0)$ and $(0.5,1)$. This corresponds to graph n.
(D) The graph of $y=2^{x}$ passes through $(0,1)$ and $(1,2)$. This corresponds to graph g.
2. $\log m=n(5-3) \quad 3 . \ln x=y(5-3) \quad$ 4. $x=10^{y}(5-3) \quad$ 5. $y=e^{x}(5-3)$
3. (A) Make a table of values:

x	-2	-1	0	1	2	3
$\left(\frac{4}{3}\right)^{x}$	$\frac{9}{16}$	$\frac{3}{4}$	1	$\frac{4}{3}$	$\frac{16}{9}$	$\frac{64}{27}$

(B) The function in part (B) is the inverse of the one graphed in part (A), so its graph is a reflection about the line $y=x$ of the graph to the left. To plot points, just switch the x and y coordinates of the points from the table in part (A).

7. $\frac{7^{x+2}}{7^{2-x}}=7^{(x+2)-(2-x)}$

$$
\begin{align*}
& =7^{x+2-2+x} \tag{5-1}\\
& =7^{2 x} \tag{5-1}
\end{align*}
$$

8. $\left(\frac{e^{x}}{e^{-x}}\right)^{x}=\left[e^{x-(-x)}\right]^{x}$
9. $\log _{2} x=3$
$x=2^{3}$
$=\left(e^{2 x}\right)^{x}=e^{2 x \cdot x}$
$=e^{2 x^{2}}$
10. $\log _{x} 25=2$
$25=x^{2}$
$x=5$
11. $\log _{3} 27=x$
$\log _{3} 3^{3}=x$
$x=3$
12. $10^{x}=17.5$
$x=\log _{10} 17.5$
$x=1.24$
since bases are restricted positive
(5-3)
13. $e^{x}=143,000$

$$
\begin{align*}
& x=\ln 143,000 \tag{5-3}\\
& x=11.9 \tag{5-5}
\end{align*}
$$

14. $\ln x=-0.01573$
$x=e^{-0.01573}$
$x=0.984$
15. $\log x=2.013$
$x=10^{2.013}$
$x=103$
16. $1.145 \quad(5-3)$
17. Not defined. $(-e$ is not in the domain of the
18. 2.211 (5-3)
19. 11.59
logarithm function.)
(5-3)
20. $2 \log a-\frac{1}{3} \log b+\log c=\log a^{2}+\log c-\log b^{\frac{1}{3}}$

$$
\begin{align*}
& =\log \left(a^{2} c\right)-\log b^{\frac{1}{3}} \\
& =\log \left(\frac{a^{2} c}{\sqrt[3]{b}}\right) \tag{5-3}
\end{align*}
$$

$$
\text { 21. } \begin{aligned}
\ln \frac{a^{5}}{\sqrt{b}} & =\ln a^{5}-\ln \sqrt{b} \\
& =5 \ln a-\ln b^{\frac{1}{2}} \\
& =5 \ln a-\frac{1}{2} \ln b
\end{aligned}
$$

22. $3^{x}=120$
$\log _{3} 3^{x}=\log _{3} 120$
$x=\log _{3} 120$
23. $10^{2 x}=500$
$\log 10^{2 x}=\log 500$
$2 x=\log 500$
24. $\log _{2}(4 x-5)=5$
$2^{5}=4 x-5$
$32=4 x-5$
or, using the change-of-base
formula $\frac{\ln 120}{\ln 3}$
(5-5)

$$
x=\frac{\log 500}{2} \quad 37=4 x ~ 子 \begin{align*}
& 2x-5) \tag{5-5}\\
&(5-5
\end{align*}
$$

25. $\ln (x-5)=0$
$x-5=e^{0}$
$x-5=1$
$x=6$
(5-5)
26. $\ln (2 x-1)=\ln (x+3)$

$$
2 x-1=x+3
$$

$$
x=4
$$

Check:

$$
\begin{align*}
\ln (2 \cdot 4-1) & \stackrel{?}{=} \ln (4+3) \\
\ln 7 & \stackrel{V}{=} \ln 7 \tag{5-5}
\end{align*}
$$

27. $\log \left(x^{2}-3\right)=2 \log (x-1) \quad$ Check:
$\begin{aligned} \log \left(x^{2}-3\right) & =\log (x-1)^{2} & & \log \left(2^{2}-3\right) \stackrel{?}{=} 2 \log (2-1) \log 1 \stackrel{?}{=} 2 \\ x^{2}-3 & =(x-1)^{2} & & \log 1\end{aligned}$
$x^{2}-3=x^{2}-2 x+1$
$-3=-2 x+1$ $\log 1$
$0 \stackrel{\vee}{=} 0$
$-4=-2 x$
$x=2$
(5-5)
28. $\quad e^{x^{2}-3}=e^{2 x}$
$x^{2}-3=2 x$
$x^{2}-2 x-3=0$
$(x-3)(x+1)=0$
$x=3,-1$
29. $4^{x-1}=2^{1-x}$
$\left(2^{2}\right)^{x-1}=2^{1-x}$
$2^{2(x-1)}=2^{1-x}$
$2(x-1)=1-x$
$2 x-2=1-x$
$3 x=3$
$x=1$
30. $\quad 2 x^{2} e^{-x}=18 e^{-x}$
$2 x^{2} e^{-x}-18 e^{-x}=0$
$2 e^{-x}\left(x^{2}-9\right)=0$
$2 e^{-x}(x-3)(x+3)=0$
$2 e^{-x}=0 \quad x-3=0 \quad x+3=0$
never $\quad x=3 \quad x=-3$
Solution: 3,-3
31. $\log _{1 / 4} 16=x$
$\log _{1 / 4} 4^{2}=x$
$\log _{1 / 4}\left(\frac{1}{4}\right)^{-2}=x$
$x=-2$
(5-5)
32. $\log _{x} 9=-2$
$x^{-2}=9$
$\frac{1}{x^{2}}=9$
$1=9 x^{2}$
$\frac{1}{9}=x^{2}$
$x= \pm \sqrt{\frac{1}{9}}$
$x=\frac{1}{3}$ since bases are restricted positive
(5-5)
33. $10^{\log _{10} x}=33$
$\log _{10} x=\log _{10} 33$
$x=33 \quad(5-5)$
34. $x=2\left(10^{1.32}\right)$
$x=41.8$
35. $x=\log _{5} 23$
$x=\frac{\log 23}{\log 5}$ or $\frac{\ln 23}{\ln 5}$
$x=1.95$
36. $x=\log \left(2.156 \times 10^{-7}\right)$ $x=-6.67$
(5-3)
37. $x=\frac{\ln 4}{\ln 2.31}$
$x=1.66$
38. $25=5(2)^{x}$
$\frac{25}{5}=2^{x}$
$5=2^{x}$
$\ln 5=x \ln 2$
$\frac{\ln 5}{\ln 2}=x$
$x=2.32$
39. $\quad 5^{2 x^{-3}}=7.08$
40. $4,000=2,500 e^{0.12 x}$ $\frac{4,000}{2,500}=e^{0.12 x}$
$0.12 x=\ln \frac{4,000}{2,500}$ $x=\frac{1}{0.12} \ln \frac{4,000}{2,500}$

$$
\begin{equation*}
x=3.92 \tag{5-5}
\end{equation*}
$$

$$
\begin{align*}
(2 x-3) \log 5 & =\log 7.08 \\
2 x-3 & =\frac{\log 7.08}{\log 5} \\
x & =\frac{1}{2}\left[3+\frac{\log 7.08}{\log 5}\right]=2.11 \tag{5-5}
\end{align*}
$$

45. $\quad \frac{e^{x}-e^{-x}}{2}=1$

$$
e^{x}-e^{-x}=2
$$

46. $\quad \log 3 x^{2}-\log 9 x=2$

$$
\begin{align*}
\log \frac{3 x^{2}}{9 x} & =2 \\
\frac{3 x^{2}}{9 x} & =10^{2} \\
\frac{x}{3} & =100 \\
x & =300 \tag{5-5}
\end{align*}
$$

This equation is quadratic in $e^{x}: e^{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \begin{aligned} & a=1, \\ & b=-2,\end{aligned}$

$$
e^{x}-\frac{1}{e^{x}}=2
$$

$$
e^{x} e^{x}-e^{x}\left(\frac{1}{e^{x}}\right)=2 e^{x}
$$

$$
\begin{aligned}
& e^{x}=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-1)}}{2} \\
& e^{x}=\frac{2 \pm \sqrt{8}}{2}=1 \pm \sqrt{2}
\end{aligned}
$$

$$
\left(e^{x}\right)^{2}-1=2 e^{x}
$$

$x=\ln (1 \pm \sqrt{2}) \quad 1-\sqrt{2}$ is negative, hence not in the domain of

$$
\left(e^{x}\right)^{2}-2 e^{x}-1=0
$$ the logarithm function. $\quad x=\ln (1+\sqrt{2})$

$$
\begin{equation*}
x=0.881 \tag{5-5}
\end{equation*}
$$

Check:

$$
\begin{aligned}
\log \left(3 \cdot 300^{2}\right)-\log (9 \cdot 300) & \stackrel{?}{=} 2 \\
\log (270,000)-\log (2,700) & \stackrel{?}{=} 2 \\
\log \frac{270,000}{2,700} & \stackrel{?}{=} 2 \\
\log 100 & \stackrel{V}{=} 2
\end{aligned}
$$

47. $\quad \log x-\log 3=\log 4-\log (x+4)$

$$
\begin{align*}
\log \frac{x}{3} & =\log \frac{4}{x+4} \\
\frac{x}{3} & =\frac{4}{x+4} \quad \begin{array}{c}
\text { excluded value: } \\
x \neq-4
\end{array} \\
3(x+4) \frac{x}{3} & =3(x+4) \frac{4}{x+4} \\
(x+4) x & =12 \\
x^{2}+4 x & =12 \tag{5-5}\\
x^{2}+4 x-12 & =0 \\
(x+6)(x-2) & =0 \\
x & =-6 \quad x=2
\end{align*}
$$

Check: $\log (-6)$ is not defined

$$
\begin{aligned}
\log 2-\log 3 & \stackrel{?}{=} \log 4-\log (2+4) \\
\log \frac{2}{3} & \stackrel{?}{=} \log \frac{4}{6} \\
\log \frac{2}{3} & \stackrel{\bigvee}{=} \log \frac{2}{3}
\end{aligned}
$$

Solution: 2
48. $\quad \ln (x+3)-\ln x=2 \ln 2$

$$
\begin{aligned}
\ln \frac{x+3}{x} & =\ln 2^{2} \\
\frac{x+3}{x} & =2^{2} \\
\frac{x+3}{x} & =4 \\
x+3 & =4 x \\
3 & =3 x \\
x & =1
\end{aligned}
$$

49. $\ln (2 x+1)-\ln (x-1)=\ln x$

$$
\begin{aligned}
\ln \frac{2 x+1}{x-1} & =\ln x \\
\frac{2 x+1}{x-1} & =x \quad \text { Excluded value: } x \neq 1 \\
(x-1) \frac{2 x+1}{x-1} & =x(x-1) \\
2 x+1 & =x^{2}-x \\
0 & =x^{2}-3 x-1
\end{aligned}
$$

Check: $\ln \left(\frac{3-\sqrt{13}}{2}\right)$ is not defined

$$
\begin{array}{r}
\ln \left(2 \cdot \frac{3+\sqrt{13}}{2}+1\right)-\ln \left(\frac{3+\sqrt{13}}{2}-1\right) \\
\stackrel{?}{=} \ln \left(\frac{3+\sqrt{13}}{2}\right) \\
\ln (3+\sqrt{13}+1)-\ln \left(\frac{3+\sqrt{13}-2}{2}\right) \stackrel{?}{=} \ln \left(\frac{3+\sqrt{13}}{2}\right)
\end{array}
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad a=1, b=-3, c=-1 \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(-1)}}{2(1)}=\frac{3 \pm \sqrt{13}}{2}
\end{aligned}
$$

$$
\begin{array}{r}
\ln (4+\sqrt{13})-\ln \left(\frac{1+\sqrt{13}}{2}\right) \stackrel{?}{=} \ln \left(\frac{3+\sqrt{13}}{2}\right) \\
\ln \left(\frac{4+\sqrt{13}}{1} \cdot \frac{2}{1+\sqrt{13}}\right) \stackrel{?}{=} \ln \left(\frac{3+\sqrt{13}}{2}\right) \\
\ln \left(\frac{(4+\sqrt{13})}{1+\sqrt{13}}\right)
\end{array} \stackrel{?}{=} \ln \left(\frac{3+\sqrt{13}}{2}\right) .
$$

Solution: $\frac{3+\sqrt{13}}{2}$
50.

$$
\begin{aligned}
(\log x)^{3} & =\log x^{9} \\
(\log x)^{3} & =9 \log x
\end{aligned}
$$

$(\log x)^{3}-9 \log x=0$
$\log x\left[(\log x)^{2}-9\right]=0$
$\log x(\log x-3)(\log x+3)=0$
$\log x=0 \quad \log x-3=0 \quad \log x+3=0$
$x=1 \quad \log x=3 \quad \log x=-3$

$$
x=10^{3} \quad x=10^{-3}
$$

Check: $(\log 1)^{3} \stackrel{?}{=} \log 1^{9}$
$0 \stackrel{\vee}{=} 0$
51. $\ln (\log x)=1$
$\log x=e$
$x=10^{e}$
$\left(\log 10^{3}\right)^{3} \stackrel{?}{=} \log \left(10^{3}\right)^{9}$
$27 \stackrel{\sqrt{ }}{=} 27$
$\left(\log 10^{-3}\right)^{3} \stackrel{?}{=} \log \left(10^{-3}\right)^{9}$
$-27 \stackrel{\vee}{=}-27$
Solution: $1,10^{3}, 10^{-3} \quad(5-5)$
52. $\left(e^{x}+1\right)\left(e^{-x}-1\right)-e^{x}\left(e^{-x}-1\right)=e^{x} e^{-x}-e^{x}+e^{-x}-1-e^{x} e^{-x}+e^{x}=1-e^{x}+e^{-x}-1-1+e^{x}=e^{-x}-1$
53. $\left(e^{x}+e^{-x}\right)\left(e^{x}-e^{-x}\right)-\left(e^{x}-e^{-x}\right)^{2}=\left(e^{x}\right)^{2}-\left(e^{-x}\right)^{2}-\left[\left(e^{x}\right)^{2}-2 e^{x} e^{-x}+\left(e^{-x}\right)^{2}\right]=e^{2 x}-e^{-2 x}-\left[e^{2 x}-2+e^{-2 x}\right]$
$=e^{2 x}-e^{-2 x}-e^{2 x}+2-e^{-2 x}=2-2 e^{-2 x}$
54. The graph of g is the same as the graph of f reflected through the x axis, shrunk vertically by a factor of $\frac{1}{3}$, and shifted upward 3 units; g is decreasing. Domain: all real numbers Horizontal asymptote: $y=3$

(5-1)
55. The graph of g is the same as the graph of f stretched vertically by a factor of 2 and shifted downward 4 units; g is increasing.
Domain: all real numbers
Horizontal asymptote: $y=-4$

56. The graph of g is the same as the graph of f shifted downward 2 units; g is increasing. Domain: $(0, \infty)$ Vertical asymptote: $x=0$

57. The graph of g is the same as the graph of f stretched vertically by a factor of 2 and shifted upward 1 unit; g is decreasing.
Domain: $(0, \infty)$ Vertical asymptote: $x=0$

58. If the graph of $y=e^{x}$ is reflected in the x axis, y is replaced by $-y$ and the graph becomes the graph of $-y=e^{x}$ or $y=-e^{x}$.
If the graph of $y=e^{x}$ is reflected in the y axis, x is replaced by $-x$ and the graph becomes the graph of
$y=e^{-x}$ or $y=\frac{1}{e^{x}}$ or $y=\left(\frac{1}{e}\right)^{x}$.
59. (A) For $x>-1, y=e^{-x / 3}$ decreases from $e^{1 / 3}$ to 0 while $\ln (x+1)$ increases from $-\infty$ to ∞. Consequently, the graphs can intersect at exactly one point.
(B) Graphing $y_{1}=e^{-x / 3}$ and $y_{2}=4 \ln (x+1)$ we obtain

The solution of $e^{-x / 3}=4 \ln (x+1)$ is $x=0.258$.
60. Examining the graph of $f(x)=4-x^{2}+\ln x$, we obtain
10

10

The zeros are at 0.018 and 2.187.
61. Graphing $y_{1}=10^{x^{-3}}$ and $y_{2}=8 \log x$, we obtain

-10

The graphs intersect at (1.003, 0.010) and (3.653, 4.502).
62.

$$
\begin{aligned}
D & =10 \log \frac{I}{I_{0}} \\
\frac{D}{10} & =\log \frac{I}{I_{0}} \\
10^{D / 10} & =\frac{I}{I_{0}} \\
I_{0} 10^{D / 10} & =I \\
I & =I_{0}\left(10^{D / 10}\right)
\end{aligned}
$$

63. $y=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$
$\sqrt{2 \pi} y=e^{-x^{2} / 2}$
$-\frac{x^{2}}{2}=\ln (\sqrt{2 \pi} y)$
$x^{2}=-2 \ln (\sqrt{2 \pi} y)$
$x= \pm \sqrt{-2 \ln (\sqrt{2 \pi} y)}$
64. $x=-\frac{1}{k} \ln \frac{I}{I_{0}}$
$-k x=\ln \frac{I}{I_{0}}$
$\frac{I}{I_{0}}=e^{-k x}$
$I=I_{0}\left(e^{-k x}\right)(5-5)$
(5-5)
65. $r=P \frac{i}{1-(1+i)^{-n}}$

$$
\frac{r}{P}=\frac{i}{1-(1+i)^{-n}}
$$

$$
\frac{P}{r}=\frac{1-(1+i)^{-n}}{i}
$$

$$
\frac{P i}{r}=1-(1+i)^{-n}
$$

$$
\frac{P i}{r}-1=-(1+i)^{-n}
$$

$$
1-\frac{P i}{r}=(1+i)^{-n}
$$

$$
\ln \left(1-\frac{P i}{r}\right)=-n \ln (1+i)
$$

$$
\frac{\ln \left(1-\frac{P_{i}}{r}\right)}{-\ln (1+i)}=n
$$

$$
\begin{equation*}
n=-\frac{\ln \left(1-\frac{p i}{r}\right)}{\ln (1+i)} \tag{5-5}
\end{equation*}
$$

67.

x	$y=\log _{2} x$	$x=\log _{2} y$	y
1	0	0	1
2	1	1	2
4	2	2	4
8	3	3	8

Domain $f=(0, \infty)=$ Range f^{1} Range $f=(-\infty, \infty)=$ Domain f^{1}

68. If $\log _{1} x=y$, then we would have to have $1 y=x$; that is, $1=x$ for arbitrary positive x, which is impossible.
69. Let $u=\log _{b} M$ and $v=\log _{b} N$; then $M=b^{u}$ and $N=b^{v}$.

Thus, $\log (M N)=\log _{b}\left(b^{u} b^{v}\right)=\log _{b} b^{u+v}=u+v=\log _{b} M+\log _{b} N$.
70. We solve $P=P_{0}(1.03)^{t}$ for t, using $P=2 P_{0}$.

$$
\begin{align*}
2 P_{0} & =P_{0}(1.03)^{t} \\
2 & =(1.03)^{t} \\
\ln 2 & =t \ln 1.03 \\
\frac{\ln 2}{\ln 1.03} & =t \\
t & =23.4 \text { years } \tag{5-2}
\end{align*}
$$

71. We solve $P=P_{0} e^{0.03 t}$ for t using $P=2 P_{0}$.

$$
\begin{aligned}
2 P_{0} & =P_{0} e^{0.03 t} \\
2 & =e^{0.03 t} \\
\ln 2 & =0.03 t \\
\frac{\ln 2}{0.03} & =t \\
t & =23.1 \text { years }
\end{aligned}
$$

$\ln \left(\frac{y}{c}\right)=-5 t$

$$
\begin{align*}
\frac{y}{c} & =e^{-5 t} \tag{1}\\
y & =c e^{-5 t} \tag{5-5}
\end{align*}
$$

72.

$$
\begin{aligned}
A_{0} & =\text { original amount } \\
0.01 A_{0} & =1 \text { percent of original amount }
\end{aligned}
$$

We solve $A=A_{0} e^{-0.000124 t}$ for t, using $A=0.01 A_{0}$.

$$
\begin{align*}
0.01 A_{0} & =A_{0} e^{-0.000124 t} \\
0.01 & =e^{-0.000124 t} \\
\ln 0.01 & =-0.000124 t \\
\frac{\ln 0.01}{-0.000124} & =t \tag{5-2}\\
t & =37,100 \text { years } \tag{5-2}
\end{align*}
$$

73. (A) When $t=0, N=1$. As t increases by $1 / 2, N$ doubles. Hence $N=1 \cdot(2)^{t \div 1 / 2}$

$$
N=2^{2 t}\left(\text { or } N=4^{t}\right)
$$

(B) We solve $N=4^{t}$ for t, using

$$
\begin{aligned}
N & =10^{9} \\
10^{9} & =4^{t} \\
9 & =t \log 4 \\
t & =\frac{9}{\log 4} \\
t & =15 \text { days }
\end{aligned}
$$

74. We use $A=P e^{r t}$ with $P=1, r=0.03$, and
75.(A)

$$
\begin{aligned}
& t=2011-1=2010 \\
& A=1 e^{0.03(2010)} \\
& A=1.5 \times 10^{26} \text { dollars }(5-1)
\end{aligned}
$$

t	p
0	1,000
5	670
10	449
15	301
20	202
25	135
30	91

(B)As t tends to infinity, P appears to tend to 0 .
76. $M=\frac{2}{3} \log \frac{E}{E_{0}} \quad E_{0}=10^{4.40}$

$$
\text { We use } E=1.99 \times 10^{14}
$$

$M=\frac{2}{3} \log \frac{1.99 \times 10^{14}}{10^{4.40}}$
$M=\frac{2}{3} \log \left(1.99 \times 10^{9.6}\right)$
$M=\frac{2}{3}(\log 1.99+9.6)$
$M=\frac{2}{3}(0.299+9.6)$
$M=6.6$
78. We use the given formula twice, with

$$
\begin{align*}
I_{2} & =100,000 I_{1} \\
D_{1} & =10 \log \frac{I_{1}}{I_{0}} \quad D_{2}=10 \log \frac{I_{2}}{I_{0}} \\
D_{2}-D_{1} & =10 \log \frac{I_{2}}{I_{0}}-10 \log \frac{I_{1}}{I_{0}}=10 \log \left(\frac{I_{2}}{I_{0}} \div \frac{I_{1}}{I_{0}}\right)=10 \log \frac{I_{2}}{I_{1}} \\
& =10 \log \frac{100,000 I_{1}}{I_{1}}=10 \log 100,000=50 \text { decibels } \tag{5-2}
\end{align*}
$$

The level of the louder sound is 50 decibels more.
79. $I=I_{0} e^{-k d}$

To find k, we solve for k using $I=\frac{1}{2} I_{0}$ and $d=73.6$

$$
\begin{align*}
\frac{1}{2} I_{0} & =I_{0} e^{-k(73.6)} \\
\frac{1}{2} & =e^{-73.6 k} \\
-73.6 k & =\ln \frac{1}{2} \\
k & =\frac{\ln \frac{1}{2}}{-73.6} \tag{5-2}\\
k & =0.00942
\end{align*}
$$

We now find the depth at which 1% of the surface light remains. We solve $I=I_{0} e^{-0.00942 d}$ for d with

$$
=0.01 I_{0}
$$

$$
0.01 I_{0}=I_{0} e^{-0.00942 d}
$$

$$
0.01=e^{-0.00942 d}
$$

$$
-0.00942 d=\ln 0.01
$$

$$
d=\frac{\ln 0.01}{-0.00942}
$$

$$
d=489 \text { feet }
$$

80. We solve $N=\frac{30}{1+29 e^{-1.35 t}}$ for t with $N=20$.

$$
\begin{align*}
20 & =\frac{30}{1+29 e^{-1.35 t}} \\
\frac{1}{20} & =\frac{1+29 e^{-1.35 t}}{30} \\
1.5 & =1+29 e^{-1.35 t} \\
0.5 & =29 e^{-1.35 t} \\
\frac{0.5}{29} & =e^{-1.35 t} \\
-1.35 t & =\ln \frac{0.5}{29} \\
t & =\frac{\ln \frac{0.5}{29}}{-1.35} \\
t & =3 \text { years } \tag{5-2}
\end{align*}
$$

81. (A) The independent variable is years since 1980 , so enter $0,5,10,15,20$, and 25 as L_{1}. The dependent variable is Medicare expenditures, so enter that column as L_{2}. Then use the exponential regression command on the STAT CALC menu.

The exponential model is $y=43.3(1.09)^{x}$.
To find total expenditures in 2010 and 2020, we plug in 30 and 40 for x :

$$
y(30)=43.3(1.09)^{30}=574 ; y(40)=43.3(1.09)^{40}=1,360
$$

Expenditures are predicted to be $\$ 574$ billion in 2010 and $\$ 1,360$ billion in 2020.
(B) Graph $y_{1}=43.3(1.09)^{x}$ and $y_{2}=900$ and use the INTERSECT command:

Expenditures are predicted to reach $\$ 900$ billion in 2015. (5-2)
82. (A) The independent variable is years since 1990 , so enter $4,7,10,13,16$ as L_{1}. The dependent variable is the number of subscribers, so enter the subscribers' column as L_{2}. Then use the logarithmic regression
command from the STAT CALC menu.

The model is $y=-199.1+143.7 \ln x$. Evaluating this at $x=25$ (year 2015) gives 263.5 million subscribers.
(B) With the same data as in part (A), use the logistic regression command from the STAT CALC menu.

The model is $y=\frac{354.9}{1+31.94 e^{-0.2556 x}}$. Evaluating this at $x=25$ (year 2015) gives 336.8 million
subscribers.
(C) Plot both models, together with the given data points, on the same screen.

Clearly, the logistic model fits the data better. Moreover, the logarithmic model predicts that the number of subscribers becomes infinite, eventually, which is absurd. The logistic model predicts eventual leveling off near 354.9 million, which still seems high compared with the US population, but is more reasonable. The logistic model wins on both criteria specified in the problem.

