CALCULUS Unit #2 : Applications of Derivatives

7.6 First and Second Tests, Curve Sketching

A Summary of Curve Sketching	
Key feature on curve	How to find it
y-intercept	X=O
x-intercept(s)	y=0
local min/max	f'(x)=0
inflection point(s)	f"(x)=0
vertical asymptotes	f''(x)=0 denominator=0
horizontal asymptotes y=0	
$\frac{\chi}{\chi_3} \frac{\chi}{\chi}$	$\frac{3x^2}{7x^3}$

Horizontal asymptote at y = 0

$$1. \qquad f(x) = \frac{1}{x+3}$$

1.
$$f(x) = \frac{1}{x+3}$$
 3. $f(x) = \frac{5-2x}{x^2+3x}$ 4. $f(x) = \frac{-5}{x^2-4}$

4.
$$f(x) = \frac{-5}{x^2-4}$$

5.
$$f(x) = \frac{x+1}{x^2-x-12}$$

Horizontal asymptote at y = constant

2.
$$f(x) = \frac{4x-1}{2x-1}$$

7.
$$f(x) = \frac{4x^2 - 25}{x^2 - 1}$$

2.
$$f(x) = \frac{4x-1}{2x-1}$$
 7. $f(x) = \frac{4x^2-25}{x^2-1}$ 8. $f(x) = \frac{x^2+2x-3}{x^2-2x-3}$

9.
$$f(x) = \frac{2x^2 - 2}{x^2 - 4}$$

No horizontal asymptote

6.
$$f(x) = \frac{x^2 - x - 6}{x - 1}$$
 10. $f(x) = \frac{x^2 - 5x}{x + 5}$

10.
$$f(x) = \frac{x^2 - 5x}{x + 5}$$

Rules for Horizontal Asymptotes		
Degree Relationship	H.A.	

6. [Maximum mark: 5]

A function f has its first derivative given by $f'(x) = (x-3)^3$.

(a) Find the second derivative.

[2 marks]

(b) Find f'(3) and f''(3).

[1 mark]

(c) The point P on the graph of f has x-coordinate 3. Explain why P is not a point of inflexion.

[2 marks]

6. [Maximum mark: 7]

The diagram shows part of the graph of y = f'(x). The x-intercepts are at points A and C. There is a minimum at B, and a maximum at D.

- (a) (i) Write down the value of f'(x) at C.
 - (ii) Hence, show that C corresponds to a minimum on the graph of f, i.e. it has the same x-coordinate. [3 marks]
- (b) Which of the points A, B, D corresponds to a maximum on the graph of f? [1 mark]
- (e) Show that B corresponds to a point of inflexion on the graph of f. [3 marks]

[3 marks]

8. [Maximum mark: 14]

Consider $f(x) = \frac{1}{3}x^3 + 2x^2 - 5x$. Part of the graph of f is shown below. There is a maximum point at M, and a point of inflexion at N.

- (a) Find f'(x).
- (b) Find the x-coordinate of M. [4 marks]
- (c) Find the x-coordinate of N. [3 marks]
- (d) The line L is the tangent to the curve of f at (3, 12). Find the equation of L in the form y = ax + b. [4 marks]

Part B [Maximum mark: 15]

The function f is defined as $f(x) = e^x \sin x$, where x is in radians. Part of the curve of f is shown below.

There is a point of inflexion at A, and a local maximum point at B. The curve of f intersects the x-axis at the point C.

(a) Write down the x-coordinate of the point C.

[1 mark]

(b) (i) Find f'(x).

(ii) Write down the value of f'(x) at the point B.

[4 marks]

(c) Show that $f''(x) = 2e^x \cos x$.

[2 marks]

(d) (i) Write down the value of f"(x) at A, the point of inflexion.

(ii) Hence, calculate the coordinates of A.

[4 marks]

(ii) Show that f'(x) = 0 at A.

[7 marks]

- (b) The second derivative $f''(x) = \frac{40(3x^2 + 4)}{(x^2 4)^3}$. Use this to
 - (i) justify that the graph of f has a local maximum at A:
 - (ii) explain why the graph of f does not have a point of inflexion.

[6 marks]

(c) Describe the behaviour of the graph of f for large |x|.

[1 mark]

(d) Write down the range of f.

[2 marks]

Homework:

complete WS problems