7.2b Geometic Series

Geometric Series

A geometric series is the sum of terms in a geometric sequence.
The general formula for the sum of the first n terms of a geometric sequence is

$$
S_{n}=\frac{u_{1}\left(r^{n}-1\right)}{r-1 \text { or } S_{n}=\frac{u_{1}\left(1-r^{n}\right)}{1-r} \text { rr }}
$$

Geometric Series

Find the sum of the first 8 terms in the sequence $3-6+12-\ldots$

$$
\begin{aligned}
& u_{1}=3 \quad r=-2 \quad n=8 \\
& S_{8}=\frac{3\left((-2)^{8}-1\right)}{(-2-1)} \\
&=-255
\end{aligned}
$$

Geometric Series
Find the sum of the terms in the series $\frac{5}{3}+5+15+\ldots+3645$

$$
\begin{aligned}
& u_{1}=\frac{5}{3} \quad r=3 \\
& \left(\frac{3}{5}\right) 3645=\frac{5}{3}\left(3^{n-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { graph. } \rightarrow 2187 & =3 \\
2187 & =3^{n}
\end{aligned}
$$

$$
\begin{aligned}
n-1 & =7 \\
n & =8
\end{aligned}
$$

$$
\begin{aligned}
S_{8} & =\frac{5 / 3\left(3^{8}-1\right)}{3-1} \\
& =5466.67
\end{aligned}
$$

Geometric Series

1. Find the sum of the first ten terms of $12+6+3+\ldots$

$$
\begin{aligned}
& u_{1}=12 \quad r=\frac{1}{2} \\
& S_{10}
\end{aligned}=\frac{12\left(\frac{1}{2}^{10}-1\right)}{\left(\frac{1}{2}-1\right)}, ~=23.97
$$

Geometric Series

2. An employee of a company starts on a salary of $\$ 20,000$ per year with an annual increase of 4% of the previous year's salary
a) Show that the amounts of the salary form a geometric sequence $U_{1}=20000$
$u_{2}=20800$

$$
r=1.04
$$

$u_{3}=21632$
b) Find how much the employee earns in, the tenth year of employment. $u_{10}=20000\left(1.04^{10-1}\right)=\$ 28,466.24$
c) Find the total amount the employee makes over all 10 years.

$$
\begin{aligned}
S_{10} & =\frac{20000\left(1.04^{10}-1\right)}{1.04-1} \\
& =\$ 240,122.14
\end{aligned}
$$

Geometric Series

3. A National Lottery is offering prizes in a new competition. The winner may choose one of the following.

Option one $\$ 1000$ each week for 10 weeks.
Option two $\$ 250$ in the first week, $\$ 450$ in the second week, $\$ 650$ in the third week, increasing by $\$ 200$ each week for a total of 10 weeks.
Option three $\$ 10$ in the first week, $\$ 20$ in the second week, $\$ 40$ in the third week continuing to double for a total of 10 weeks.
a) Calculate the amount you receive in the tenth week for each option.
b) Calculate the total amount you receive over all ten weeksfor each option.

Homework:

page 307-308: 1, 3, 4, 5;
page 308-309:1, 2, 4, 6, 8

