

In the figure above, the large rectangle is divided into six identical small squares. If the perimeter of the large rectangle is 30 , what is the perimeter of one of the small squares?

5.1/5.2 Exponential Growth and Decay

The natural base ' e ' is found in some common mathematical formulas:

A Catenary

short video clip...

$$
y=\frac{e^{x}+e^{-x}}{2}
$$

The Normal Curve

$$
y=e^{-x^{2}}
$$

Continuously
$A=P e^{r t}$
Compounded
Interest

e -- the natural base

e is an irrational constant, like π. It cannot be expressed as an exact fraction.

It is exactly equal to $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$
It is approximately 2.72.
The natural base ' e ' follows all the other rules of bases and exponents that you have learned.

Use a calculator to evaluate each expression to three
Simplify each expression a) $e^{-2} e^{5}=e^{3}$
b) $e^{-4}=\frac{1}{e^{4}}$
c) $e^{0}=1$
d) $e^{1.6}$
4.95
e) $\sqrt[3]{e}=e^{\frac{1}{3}}=1.40$
f) $2 \sqrt[4]{e^{3}}$

$$
\begin{aligned}
& =2 e^{\frac{3}{4}} \\
& =4.23
\end{aligned}
$$

Worksheet
la $P(t)=15 \cdot 1.0135^{t}$ growth, $\begin{aligned} & P_{0}=15, r=0.0135 \\ & 1.35 \%\end{aligned}$
$1 b$
decay 0.93-1
ic

$$
P_{0}=35, \quad r=-0.07 \text { or }-7 \%
$$

growth

$$
P_{0}=S 0, r=S \%
$$

$5.2 \mathrm{e}^{\wedge} \mathrm{x}$ notes.notebook

$$
\begin{aligned}
& \text { 2a } \begin{aligned}
& P(t)=12\left(12 \cdot 1.12^{\text {Worksheet }}\right. \\
& \text { 2b }
\end{aligned} \\
& \text { 2b(t) }=5(1-0.08)^{t} \\
&=5(0.92)^{t}
\end{aligned}
$$

2c

$$
\begin{aligned}
P(t)= & 502000(1-0.017)^{t} \\
& 502000(0.983)^{t}
\end{aligned}
$$

Worksheet

Suppose a culture of 100 bacteria is put into a peri dish and the culture doubles every hour. Write an exponential equation to represent this information. Then use a graph to predict when the number of bacteria will be 350,000.

$$
t=11.8 \mathrm{hrs}
$$

Homework Assignment:

Worksheet attached to notes

