4.5 Polynomial Functions

Linear Model	Quadratic Model	Exponential Mode

Polynomial models are functions whose largest exponent ("degree") is 3 or more.

Coordinates of local maximum:

Coordinates of local minimum:

Interval(s) where f(x) is increasing:

Interval(s) where f(x) is decreasing:

y-intercept:

x-intercept:

4.5 Polynomial Functions

- 1. Consider the function $f(x) = -\frac{1}{3}x^3 + \frac{5}{3}x^2 x 3$.
 - Sketch the graph of y = f(x) for $-3 \le x \le 6$ and $-10 \le y \le 10$ showing clearly the axes intercepts and local maximum and minimum points. Use a scale of 2 cm to represent 1 unit on the x-axis and a scale of 1 cm to represent 1 unit on the y-axis.
 - b) Find the value of f(-1). = 0 (Frace, $\chi = -1$, enter)
 - c) Write down the <u>coordinates</u> of:
 - i) the y-intercept. (0, -3)
 - ii) the local maximum.

iii) the local minimum.

$$(0.33, -3.16)$$

iv) the point where f(x) = 7.

- d) Write down the interval(s) where
 - i) f(x) is increasing. 0.33 $\angle X \angle 3$
 - ii) f(x) is decreasing.

- 2. The number of fish, F, in a pond from the period 1995 to 2015 is modeled using the formula $F(x) = -0.030x^3 + 0.86x^2 6.9x + 67$ where x is the number of years after 1995.
 - a) Sketch a fully-labeled graph of the function for $0 \le x \le 20$.

- b) Find the number of fish in the pond
 - i) in 1995 🗶 💳 🔾
 - 67 Rsh

51.48 RL.

- c) Use your graph to find the following features of the function:
 - i) The year <u>after 2005</u> that saw the most fish in the pond.

Mar. (13.4, 56.8) 1995 + 13 = 2008

- ii) The minimum number of fish in the pond before 2005. $mm: (5.73(5b.1)) \rightarrow About (50 fish) m$ 1995 + 5 = 2000
- iii) The years during which the fish population was increasing.

 (mm to much)

 12000 2008
- iv) The year when the fish population last reached 50. $50 = -6.03 x^3 + .86 x^2 6.9 x + 67$

x= 17.2 +1995 (2012)

- A pandemic is modeled using the equation $y = (x 20)^3 + 5000$ where x is the 3. number of weeks after the outbreak started and y is the total number of cases reported.
 - Sketch a fully-labeled graph of the function for $0 \le x \le 30$. a)

- Find the number of cases reported b)
 - X= after 5 weeks i)
- x⁻ after 20 weeks ii)

- Use your graph to find the following features of the function: c)
 - The week the outbreak was first discovered. i)

Fred of 2nd week.

The week in which 4000 cases were reported. ii)

X=10 weeks.

The weeks during which the reported cases were decreasing. iii)