Simultaneous Linear Models

Method 1: Substitution

$$
\begin{aligned}
& 2 x+3 y=6 \quad(0,2) \\
& 2 x-9-2 \\
& -y=-2-2 x \\
& y=2+2 x \\
& 2 x+3(2+2 x)=6 \\
& 2(0) 2 x+6+6 x=6 \\
& \text { 2(0) } y=-28 x+6=6
\end{aligned}
$$

Method 2: Graphing

$$
\left\{\begin{array}{l}
2 x+3 y=6 \\
2 x-y=-2 \\
G y=2+2 x \\
3 y=\frac{-6-2 x}{3} \\
y_{2}=\frac{(6-2 x)}{3} \\
(0,2)
\end{array}\right.
$$

Simultaneous Linear Models

Method 3: Elimination

$$
\begin{aligned}
& 20 \\
& 2 x+3 y=6 \\
&-2 x+y=+2
\end{aligned} \left\lvert\, \begin{gathered}
4 y=8 \\
y \\
\hline 2 x-2=-2 \quad(0,2) \\
2 x=0 \\
x=0
\end{gathered}\right.
$$

Method 4: PlySmlt2

APPS \rightarrow Plysumiz

$$
\begin{gathered}
H_{2} \\
(0,2)
\end{gathered}
$$

A carpenter makes wooden tables and chairs. He takes 10 hours to make a table and 4 hours to make a chair. The wood costs $\$ 120$ for a table and $\$ 40$ for a chair.
a) Find a linear model for the time required to make the tables and chairs. $\quad x \rightarrow \#$ tables $y \rightarrow \#$ of chairs

$$
\operatorname{Tim}_{1}=10 x+4 y
$$

b) Find a linear model for the cost of making the tables and chairs.

$$
\text { Cost }=120 x+40 y
$$

The carpenter works 70 hours and spends $\$ 760$ on wood.
c) How many tables and chairs can he make?

$$
10 x+4 y=70
$$

He can make 3 tabs

$$
120 x+40 y=760
$$ and 10 chairs. $y=10$

Homework Assignment: page 152 (1-5)

