SAT

The function f is graphed in the $x y$-plane above. If the function g is defined by $g(x)=$ $f(x)+4$, for how many values of x between -5 and 15 does $g(x)$ equal 0 ?

3-4 Quadratic Functions

3-4 Quadratic Functions.notebook

Domain: Domain of a quadratic function is always all real numbers. Why?
Range: depends on the vertex and whether it is opening up or down
Vertex: two ways to find it

- If in standard form: $f(x)=a x^{2}+b x+c$, then the x-value of the vertex will be $-\frac{b}{2 a}$
- How do we find the y-value of the vertex?
- If in vertex form: $f(x)=a(x-h)^{2}+k$, then the vertex is (h, k)
- Back to range: up or down?

For the following quadratic functions, analytically find the domain, range, vertex, axis of symmetry, and y-intercept. Verify these and find the x-intercepts on your graphing calculator.

$$
\begin{aligned}
& \text { opens } \uparrow \\
& f(x)=3\left(x+\frac{2}{h}\right)^{2}-\frac{1}{k} \\
& \frac{\text { Vertex }}{(-2,-1)} \\
& \text { A. of Sym } \\
& x=-2 \\
& y \geq-1 \\
& (0,11) \\
& \underline{x \text { int }}(-2.58,0)+(-1.42,0)
\end{aligned}
$$

For the following quadratic functions, analytically find the domain, range, vertex, axis of symmetry, and y-intercept. Verify these and find the x-intercepts on your graphing calculator.
$y=a x^{2}+b x+c$
popuns down

$$
f(x)=\Theta \frac{1}{2} x^{2}+3
$$

$$
\begin{aligned}
& \frac{\text { Dona ri }}{x \in \mathbb{R}} \\
& \text { Rang } \\
& y \leq 3 \\
& ,(-\infty, 3]
\end{aligned}
$$

Vera

$$
\begin{aligned}
& x=\frac{-b}{2 a}=\frac{-0}{2(-\xi)}=0 \quad \frac{x-\ln t}{(2.45,0)} \\
& (0,3) \quad \text { Aofsym: }(-2.45,0 \\
& y=0 \\
& y \text {-int }(0,3)
\end{aligned}
$$

For the following quadratic functions, analytically find the domain, range, vertex, axis of symmetry, and y-intercept. Verify these and find the x-intercepts on your graphing calculator.

$$
\begin{aligned}
& f(x)=-3 x^{2}+6 x-5 \\
& f(x)=6 x-3 x^{2}-5
\end{aligned}
$$

Range

$$
(1,-2)
$$

$$
(-\infty,-2]
$$

$y \leq-2$
Axisofs

$$
x=1
$$

Homework Assignment

WS 3.4 1-10

