24. You are flying a kite and want to know its angle of elevation. The string on the kite is 31 meters long and the kite is level with the top of a building that you know is 21 meters high. Use an inverse trigonometric function to find the angle of elevation of the kite.
\[\sin \theta = \frac{21}{31} \quad \theta = \sin^{-1} \left(\frac{21}{31} \right) \quad \theta = 42.6^\circ \]

25. Find the measure of the angle \(\theta \).
\[\tan \theta = \frac{7}{4} \quad \theta = \tan^{-1} \left(\frac{7}{4} \right) \quad \theta = 60.26^\circ \]

26. Given triangle \(ABC \) with \(a = 8 \), \(A = 49^\circ \), and \(B = 21^\circ \), find \(c \). Round your answer to two decimal places.

27. Solve triangle \(ABC \) given that \(A = 51^\circ \), \(B = 50^\circ \), and \(b = 74 \).

28. Given triangle \(ABC \) with \(a = 13 \), \(b = 15 \), and \(A = 27^\circ \), find \(c \). Round your answer to two decimal places.

29. Find the area of \(\triangle ABC \). The figure is not drawn to scale.

30. Solve \(\triangle ABC \) with \(A = 33^\circ \), \(a = 6.5 \), and \(b = 3 \).

31. Given triangle \(ABC \) with \(b = 8 \), \(c = 5 \), and \(A = 58^\circ \), find \(a \). Round the answer to two decimal places.

32. Solve triangle \(ABC \) given that \(a = 19 \), \(b = 10 \), and \(c = 14 \).